In the past decade, organic thermoelectric materials have drawn increasing attention due to their flexibility, lightness, low-cost and environment-friendly fabrication and processing, solution processable and low-temperature workable properties, compared with inorganic ones which are mostly toxic, rare and difficult to produce. An organic thermoelectric generator (OTEG) module consists of a p-leg and an n-leg, corresponding to p-doped and n-doped conducting polymers, in analogy with inorganic thermoelectric generators (TEG). Both p-leg and n-leg materials need to be optimized in order to reach a better thermoelectric performance. Since p-type materials are currently well investigated, this study is focusing on n-type materials development. Compared with p-type materials, n-type materials have poor charge transport ability and air stability due to their high electron affinity (-3 to -4 eV) after extrinsic n-type doping. Polymer P(NDIOD-T2) (poly {[N,N׳-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5’-(2,2’bithiophene)) has been selected as a n-type organic material due to its good electron mobility, solubility and air stability. N-DMBI(1H-benzimidazole, 4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl, has been proved as a good n-type dopant for P(NDIOD-T2). Previously, a series of N-substituted benzimidazole derivatives with different alkyl chains (methyl, ethyl, propyl, butyl, iso-propyl and iso-butyl) as n-type dopants were designed and synthesized. With different alkyl substituents, the six dopant molecules generate big differences in conductivity of doped P(NDIOD-T2). Concerning the maximum conductivity of P(NDIOD-T2) they can reach after doping process, the one with iso-propyl substituent, N-DiPrBI, gives a significant increase from 3.4×10-7 S/cm at undoped state to 7.2×10-3 S/cm; while the dopant N-DMBI with methyl substituent, shows the lowest increased conductivity, 1.76×10-3 S/cm. In order to guide further improvement of the performances and to design new 1H-benzimidazoles, the doping mechanism and the performance influence factors need to be investigated. In this work, X-ray Diffraction (XRD), Cyclic Voltammetry (CV), Density Functional Theory (DFT) calculations, Infrared (IR) spectroscopy and Differential Scanning Calorimetry (DSC) were performed on dopants to elucidate the working mechanism in1H-benzimidazole/P(NDIOD-T2) doping system. Our results are consistent with an electron transfer from the HOMO of dopants to the LUMO of the polymer when they interact with each other. In addition, crystalline motifs of dopant molecules together with DSC analysis on dopants suggest a rationalization of different conductivity improvement performance which is based on a possible interaction between the dopant and P(NDIOD-T2) by π-π stacking.
Negli ultimi dieci anni, il termoelettrico organico ha portato ad una crescente attenzione grazie alle sue proprietà di flessibilità, leggerezza e fabbricazione a basso costo e basso impatto ambientale, rispetto a quelle dei materiali inorganici che sono per lo più tossiche, rare e difficili da produrre . Il modulo di un generatore termoelettrico organico (OTEG) consiste in due gambe (p- e n-), che corrispondono rispettivamente ai polimeri conduttori drogati p e n, in analogia con i generatori termoelettrici inorganici (TEG). Sia i materiali p- che n- devono essere ottimizzati per ottenere prestazioni termoelettriche migliori. Poiché il materiale drogato p è attualmente ben studiato, questo studio si concentra sullo sviluppo di materiali drogati n. Rispetto al materiale di tipo p, il materiale di tipo n ha scarsa capacità di trasporto della carica e stabilità dell'aria grazie alla sua elevata affinità elettronica (da -3 a -4 eV) dopo il drogaggio di tipo n estrinseco. Il P(NDIOD-T2) (poli {[N, N 'bis (2-ottildecil) -nafthalene-1,4,5,8-bis (dicarboximmide) -2,6-diil] -alt-5,5’-(2,2’-bithiofene)) è stato selezionato come polimero di tipo n per la sua buona mobilità elettronica, solubilità e stabilità dell'aria. L’ N-DMBI (1H-benzimidazolo, 4- (1,3-dimetil-2,3-diidro-1H-benzoimidazol-2-il) fenile), è stato dimostrato come un buon drogante di tipo n per P (NDIOD- T2). In precedenza, una serie di derivati del benzimidazolo N-sostituiti con diverse catene alchiliche (metile, etile, propile, butile, isopropile e isobutile) sono stati progettati e sintetizzati come droganti di tipo n. Con i loro diversi sostituenti alchilici, i sei droganti hanno mostrato grandi differenze nell’aumentare la conducibilità del P (NDIOD-T2). Per quanto riguarda la massima conduttività che possono raggiungere dopo il processo di drogaggio, quello con sostituente isopropilico, N-DiPrBI fornisce un aumento significativo della conduttività, da 3,4 × 10-7 S / cm a stato non drogato a 7,2 × 10-3 S / cm; invece, il drogante con sostituente metilico, N-DMBI, mostra la conducibilità più bassa, 1,76 × 10-3 S / cm. Al fine di migliorare ulteriormente e progettare nuovi droganti di 1H-benzimidazolo, è necessario indagare il meccanismo del drogaggio e i fattori che influenzano le prestazioni. In questa ricerca, la Diffrazione ai raggi X (XRD), la Voltammetria ciclica (CV), la modellazione mediante Density Functional Theory (DFT), la spettroscopia infrarossa (IR) e la Calorimetria a Scansione Differenziale (DSC) sono stati usati per chiarire il meccanismo di azione nel sistema drogante 1H-benzimidazolo/P(NDIOD-T2). Sulla base dei risultati, si ipotizza un trasferimento di elettroni diretto dall'HOMO dei droganti al LUMO del polimero quando interagiscono tra loro. Inoltre, le strutture cristalline di sei droganti e le curve DSC del polimero drogato P(NDIOD-T2) ci forniscono una spiegazione ragionevole delle loro diverse prestazioni di miglioramento della conduttività basata una possibile interazione π-π del drogante N-DiPrBI con il P(NDIOD-T2).
1H-benzimidazoles as n-type dopants : study of structure and doping capability
ZHANG, TIANSHU
2018/2019
Abstract
In the past decade, organic thermoelectric materials have drawn increasing attention due to their flexibility, lightness, low-cost and environment-friendly fabrication and processing, solution processable and low-temperature workable properties, compared with inorganic ones which are mostly toxic, rare and difficult to produce. An organic thermoelectric generator (OTEG) module consists of a p-leg and an n-leg, corresponding to p-doped and n-doped conducting polymers, in analogy with inorganic thermoelectric generators (TEG). Both p-leg and n-leg materials need to be optimized in order to reach a better thermoelectric performance. Since p-type materials are currently well investigated, this study is focusing on n-type materials development. Compared with p-type materials, n-type materials have poor charge transport ability and air stability due to their high electron affinity (-3 to -4 eV) after extrinsic n-type doping. Polymer P(NDIOD-T2) (poly {[N,N׳-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5’-(2,2’bithiophene)) has been selected as a n-type organic material due to its good electron mobility, solubility and air stability. N-DMBI(1H-benzimidazole, 4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl, has been proved as a good n-type dopant for P(NDIOD-T2). Previously, a series of N-substituted benzimidazole derivatives with different alkyl chains (methyl, ethyl, propyl, butyl, iso-propyl and iso-butyl) as n-type dopants were designed and synthesized. With different alkyl substituents, the six dopant molecules generate big differences in conductivity of doped P(NDIOD-T2). Concerning the maximum conductivity of P(NDIOD-T2) they can reach after doping process, the one with iso-propyl substituent, N-DiPrBI, gives a significant increase from 3.4×10-7 S/cm at undoped state to 7.2×10-3 S/cm; while the dopant N-DMBI with methyl substituent, shows the lowest increased conductivity, 1.76×10-3 S/cm. In order to guide further improvement of the performances and to design new 1H-benzimidazoles, the doping mechanism and the performance influence factors need to be investigated. In this work, X-ray Diffraction (XRD), Cyclic Voltammetry (CV), Density Functional Theory (DFT) calculations, Infrared (IR) spectroscopy and Differential Scanning Calorimetry (DSC) were performed on dopants to elucidate the working mechanism in1H-benzimidazole/P(NDIOD-T2) doping system. Our results are consistent with an electron transfer from the HOMO of dopants to the LUMO of the polymer when they interact with each other. In addition, crystalline motifs of dopant molecules together with DSC analysis on dopants suggest a rationalization of different conductivity improvement performance which is based on a possible interaction between the dopant and P(NDIOD-T2) by π-π stacking.File | Dimensione | Formato | |
---|---|---|---|
TS-Thesis.pdf
non accessibile
Descrizione: TS
Dimensione
3.22 MB
Formato
Adobe PDF
|
3.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/148722