Carbon Nanotubes represent a nanotechnological material that possesses remarkable properties, among which a high conductivity and a peculiar conduction mechanism based on the so called “tunneling effect”. Such property leads to a piezoresistive behaviour and the possibility of transferring it to normally not conductive structures exploiting CNT embeddings. Very low concentrations of CNTs can be distributed randomly or with organized architectures in bulk or composite materials, generating a distributed sensing network. The latter can be exploited for deformations and stresses self-sensing with the creation of smart sensing structures. Composite materials represent an ideal solution for the realization of newly designed laminated smart structures, in which CNTs can be easily implied by enriching the matrix or inserted just as another organized layer. Also, the easily embeddable nano-dimensions of CNTs, allows the realization of small and tailorable deformation sensors, compatible for selective deployment on already existing structures. Smart composite structures with CNT embeddings were designed and fabricated for self-sensing applications in this work. In particular, the possibility of monitoring selective local channels among the globally distributed sensing network, was exploited to estimate the overall and local mechanical condition starting from the electrical CNT signal. Static loads were monitored both via CNTs both via mechanical sensors to establish an electromechanical characterization of the smart composite beams. The widespread use of lightweight structures has emphasized the need of monitoring and reducing undesired vibrations that can compromise the integrity of the systems. Dynamic excitations were therefore provided in order to test the mechanical condition estimation and real-time monitoring in vibrating environment of designed components. Because of the direct relation, the CNT sensing/estimation compatibility with actuation was assessed. The design and testing of a vibration control algorithm for vibrations suppression, based on CNT measurements, represents the ultimate assessment of the CNT compatibility for smart structures applications.
I Carbonanotubi rappresentano un materiale nanotecnologico che possiede proprietà notevoli, fra le quali una elevata conduttività e un peculiare meccanismo di conduzione basato sul cosiddetto effetto tunneling. Queste proprietà li rendono capaci di un comportamento piezoelettrico trasferibile a materiali normalmente non conduttivi se inseriti al loro interno. Bassissime concentrazioni di nanotubi possono essere distribuite casualmente o tramite architetture organizzate in materiali sfusi o compositi, generando un network distribuito per il sensing. Quest’ultimo può essere sfruttato per il monitoraggio autonomo di deformazioni e sforzi, con la creazione di strutture smart. I materiali compositi rappresentano una soluzione ideale per la realizzazione di nuove strutture laminari, all’interno delle quali i CNT possono essere facilmente inseriti arricchendo la matrice o inseriti come un altro layer organizzato. Inoltre, la peculiare nanodimensione dei CNT li rende facilmente implementabili in strutture, e rende possibile anche la realizzazione di piccoli e adattabili sensori, compatibili per applicazioni di monitoraggio più comune su strutture già esistenti. In questo lavoro sono state realizzate strutture composite smart con aggiunta di CNT, il cui design e la fabbricazione sono orientati all’applicazione nell’ambito del self-sensing. In particolare, la possibilità di usufruire sia di canali locali che globalmente distribuiti del network CNT, è stata sfruttata per stimare la condizione meccanica complessiva e locale a partire dal segnale elettrico dei nanotubi, Carichi statici sono stati monitorati sia attraverso il network di CNT sia tramite sensori meccanici per stabilire una caratterizzazione elettromeccanica delle strutture composite smart realizzate. La imponente diffusione di strutture leggere ha enfatizzato la necessità di monitorarne la condizione e quella di ridurre vibrazioni indesiderate che possano comprometterne l’integrità. Di conseguenza, sono state adoperate delle eccitazioni dinamiche per testare la stima della condizione meccanica e del monitoraggio in tempo reale quando i componenti sono posti in ambiente vibrazionale. Vista la diretta relazione, è stata valutata la compatibilità del sensing e della stima basata sui CNT con l’attuazione. In tal senso, il design e il testing di un algoritmo di controllo per la soppressione di vibrazioni, basato sulle misure dei CNT, rappresenta la finale applicazione di verifica della compatibilità fra CNT e strutture smart.
Exploitation of carbon nanotubes in smart structures to develop self-sensing features
BAUMGARTNER, ALESSANDRO
2018/2019
Abstract
Carbon Nanotubes represent a nanotechnological material that possesses remarkable properties, among which a high conductivity and a peculiar conduction mechanism based on the so called “tunneling effect”. Such property leads to a piezoresistive behaviour and the possibility of transferring it to normally not conductive structures exploiting CNT embeddings. Very low concentrations of CNTs can be distributed randomly or with organized architectures in bulk or composite materials, generating a distributed sensing network. The latter can be exploited for deformations and stresses self-sensing with the creation of smart sensing structures. Composite materials represent an ideal solution for the realization of newly designed laminated smart structures, in which CNTs can be easily implied by enriching the matrix or inserted just as another organized layer. Also, the easily embeddable nano-dimensions of CNTs, allows the realization of small and tailorable deformation sensors, compatible for selective deployment on already existing structures. Smart composite structures with CNT embeddings were designed and fabricated for self-sensing applications in this work. In particular, the possibility of monitoring selective local channels among the globally distributed sensing network, was exploited to estimate the overall and local mechanical condition starting from the electrical CNT signal. Static loads were monitored both via CNTs both via mechanical sensors to establish an electromechanical characterization of the smart composite beams. The widespread use of lightweight structures has emphasized the need of monitoring and reducing undesired vibrations that can compromise the integrity of the systems. Dynamic excitations were therefore provided in order to test the mechanical condition estimation and real-time monitoring in vibrating environment of designed components. Because of the direct relation, the CNT sensing/estimation compatibility with actuation was assessed. The design and testing of a vibration control algorithm for vibrations suppression, based on CNT measurements, represents the ultimate assessment of the CNT compatibility for smart structures applications.File | Dimensione | Formato | |
---|---|---|---|
TesiCNT_baumgartner.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi modificata
Dimensione
57.78 MB
Formato
Adobe PDF
|
57.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/148745