In recent years, Two-Photon Polymerization (2PP) has gained an important role among additive manufacturing techniques providing sub-micron spatial resolution. It is based on the non-linear absorption of infrared light from a pulsed femtosecond laser. The possibility to realize structures with high resolution and three-dimensional geometries is very interesting for applications in micro-optics, micro-fluidics, micro-mechanics and photonics. In particular, 2PP could be an innovative technique to decrease the dimensions of metamaterials-based structures. Metamaterials are artificial materials whose unit cells have been engineered to achieve features that are not present in nature. This thesis work, developed in collaboration with the Civil and Environmental Engineering Department of Politecnico di Milano, is focused on the characterization of the SZ2080 photoresist, that is the material used for 2PP here, and on the fabrication, using probably for the first time the 2PP technique for this purpose, of a 3D phononic crystal, that is a periodic mechanicals metamaterial that presents a phononic bandgap. The first part regards the characterization of the SZ2080 resist. In particular, the density has been measured, and the Young’s modulus has been determined both through a static and a dynamic measurement. These data are necessary to design and evaluate the bandgap of phononic crystals through simulations, and to calculate the resonant frequencies of cantilever-shaped resonators. The second part is about the fabrication of 3D phononic crystals with a wide bandgap at high frequency and a cantilever with a resonance frequency inside the crystal’s bandgap, able to evaluate the attenuation in the transmission of vibrations.
Negli ultimi anni, la polimerizzazione a due fotoni (2PP) ha acquisito un ruolo importante fra le tecniche di produzione additive offrendo una risoluzione sub-micrometrica. Si basa sull’assorbimento non lineare di luce infrarossa emessa da un laser impulsato a femtosecondi. La possibilità di realizzare strutture con elevate risoluzioni e con geometrie tridimensionali è molto interessante per quanto riguarda applicazioni in micro-ottica, in micro-fluidica, in micro-meccanica e in fotonica. In particolare, la 2PP potrebbe essere una tecnica innovative per diminuire le dimensioni delle strutture basate sui metamateriali. I metamateriali sono materiali artificiali le cui celle unitarie sono state ingegnerizzate per ottenere caratteristiche che non sono presenti in natura. Questo lavoro di tesi, svolto in collaborazione con il Dipartimento di Ingegneria Civile e Ambientale del Politecnico di Milano, è concentrato sulla caratterizzazione del fotoresist SZ2080, che è il materiale usato qui per la 2PP, e sulla fabbricazione, usando probabilmente per la prima volta la tecnica 2PP in questo ambito, di un cristallo fononico 3D, che è un metamateriale meccanico periodico che presenta un bandgap fononico. La prima parte riguarda la caratterizzazione della resina SZ2080. In particolare, è stata misurata la densità, e il modulo di Young è stato determinato sia attraverso una misura statica sia attraverso una misura dinamica. Questi dati sono necessari per progettare e valutare il bandgap del cristallo fononico attraverso simulazioni, e per calcolare la frequenza di risonanza di un risonatore a forma di cantilever. La seconda parte riguarda la fabbricazione di un cristallo fononico 3D con un ampio bandgap ad alta frequenza e di un risonatore con una frequenza di risonanza all’interno del bandgap del cristallo, in grado di valutare l’attenuazione nella trasmissione delle vibrazioni.
Mechanical characterization of SZ2080 photoresist and fabrication of a microscale phononic crystal with two-photon polymerization
PERTOLDI, LUCA
2018/2019
Abstract
In recent years, Two-Photon Polymerization (2PP) has gained an important role among additive manufacturing techniques providing sub-micron spatial resolution. It is based on the non-linear absorption of infrared light from a pulsed femtosecond laser. The possibility to realize structures with high resolution and three-dimensional geometries is very interesting for applications in micro-optics, micro-fluidics, micro-mechanics and photonics. In particular, 2PP could be an innovative technique to decrease the dimensions of metamaterials-based structures. Metamaterials are artificial materials whose unit cells have been engineered to achieve features that are not present in nature. This thesis work, developed in collaboration with the Civil and Environmental Engineering Department of Politecnico di Milano, is focused on the characterization of the SZ2080 photoresist, that is the material used for 2PP here, and on the fabrication, using probably for the first time the 2PP technique for this purpose, of a 3D phononic crystal, that is a periodic mechanicals metamaterial that presents a phononic bandgap. The first part regards the characterization of the SZ2080 resist. In particular, the density has been measured, and the Young’s modulus has been determined both through a static and a dynamic measurement. These data are necessary to design and evaluate the bandgap of phononic crystals through simulations, and to calculate the resonant frequencies of cantilever-shaped resonators. The second part is about the fabrication of 3D phononic crystals with a wide bandgap at high frequency and a cantilever with a resonance frequency inside the crystal’s bandgap, able to evaluate the attenuation in the transmission of vibrations.File | Dimensione | Formato | |
---|---|---|---|
2019-07-Pertoldi.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
3.3 MB
Formato
Adobe PDF
|
3.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/148886