This dissertation concerns the use of molybdenum-coated graphite samples in various physical systems where heavy charged particle radiation loads are present. The interest is in the evaluation of the role of the sample's composition and surface structure when exposed to extreme thermal conditions, specifically in confinement systems for highly energetic particle beams. In particular, the project involved the production of Mo-coated samples for two lines of experimental studies: use as plasma-facing components in nuclear fusion reactors and use as beam-stopping devices in the collimation system of a particle accelerator. In the case of nuclear fusion studies, the executed work was included in an international work package regarding plasma-facing components (WP PFC of the EUROfusion consortium). The aim was to test how the introduction of surface roughness of the employed materials would affect the lifetime of the reactor walls and the depletion of the plasma. Such studies have been performed in different facilities, involving both linear and toroidal plasma devices. Promising results have been gathered from these experiments about the dependence of the sample’s sputtering yield on the roughness of the Mo-coated graphite surface. The extrapolated trend is a decreasing one, confirming that surface roughness has a positive effect of the overall lifetime of the plasma exposed components. Concerning the samples used in particle accelerator collimation systems, a novel material developed at CERN has been employed: MoGr, a compound formed by a graphite matrix infiltrated with micron-sized Mo particles. This material was coated with a thick molybdenum film and its mechanical and electrical properties were tested. The final aim was the evaluation of the capability of the compound to withstand the extreme energy loads present in the LHC proton accelerator. Lastly, another purpose of the thesis was to perform an analysis of the capabilities and limitations of the selected film deposition technique, which was Pulsed Laser Deposition.
Il seguente elaborato riguarda l'uso di campioni di grafite coperti da film in molibdeno, impiegati in diversi sistemi fisici dove sono presenti forti carichi di radiazione. L'interesse è nel valutare il ruolo della composizione e struttura superficiale dei campioni quando esposti a condizioni termiche estreme, come quelle presenti all’interno di sistemi di confinamento di fasci di particelle altamente energetiche. Nello specifico, questo progetto ha incluso la produzione di campioni con coating in molibdeno per due diverse linee di esperimenti: uso come componenti esposte a plasmi in reattori per fusione nucleare e uso come materiali per rallentamento del fascio nel sistema di collimazione di un acceleratore di particelle. Nel caso di studi sulla fusione nucleare, il lavoro è stato svolto all’interno di un programma di ricerca internazionale riguardante le componenti solide esposte ai plasmi (WP PFC del consorzio EUROfusion). L’obbiettivo era quello di testare come l’introduzione di rugosità superficiale dei materiali considerati potesse influenzare il tempo di vita delle pareti del reattore e il deperimento del plasma. Tali studi sono stati svolti presso diversi istituti, con l’ausilio di macchine generatrici di plasma sia lineari che toroidali. Da questi esperimenti sono stati ricavati dei risultati promettenti sulla dipendenza dello sputtering yield dei campioni dalla rugosità della superficie di grafite coperta da molibdeno. Il trend ricavato è decrescente, confermando il fatto che la rugosità ha un effetto positivo sul tempo di vita delle componenti esposte al plasma. Considerando i campioni usati in sistemi di collimazione di acceleratori di particelle, è stato impiegato un materiale innovativo sviluppato al CERN: il MoGr, un composto formato da una matrice di grafite infiltrata da particelle di Mo di taglia nell’ordine del micron. Questo materiale è stato coperto da uno spesso film in molibdeno e ne sono state testate le proprietà meccaniche ed elettriche. Lo scopo finale era quello di valutare la capacità del composto di sostenere carichi di energia elevatissimi, come quelli presenti nell’acceleratore di protoni LHC. Infine, un ulteriore scopo della tesi è stato quello di svolgere un’analisi delle capacità e limitazioni della tecnica di deposizione selezionata, che è la ‘Pulsed Laser Deposition’.
Molybdenum coatings on rough graphite for applications in nuclear fusion devices and particle accelerators
ROMEO, FEDERICA
2018/2019
Abstract
This dissertation concerns the use of molybdenum-coated graphite samples in various physical systems where heavy charged particle radiation loads are present. The interest is in the evaluation of the role of the sample's composition and surface structure when exposed to extreme thermal conditions, specifically in confinement systems for highly energetic particle beams. In particular, the project involved the production of Mo-coated samples for two lines of experimental studies: use as plasma-facing components in nuclear fusion reactors and use as beam-stopping devices in the collimation system of a particle accelerator. In the case of nuclear fusion studies, the executed work was included in an international work package regarding plasma-facing components (WP PFC of the EUROfusion consortium). The aim was to test how the introduction of surface roughness of the employed materials would affect the lifetime of the reactor walls and the depletion of the plasma. Such studies have been performed in different facilities, involving both linear and toroidal plasma devices. Promising results have been gathered from these experiments about the dependence of the sample’s sputtering yield on the roughness of the Mo-coated graphite surface. The extrapolated trend is a decreasing one, confirming that surface roughness has a positive effect of the overall lifetime of the plasma exposed components. Concerning the samples used in particle accelerator collimation systems, a novel material developed at CERN has been employed: MoGr, a compound formed by a graphite matrix infiltrated with micron-sized Mo particles. This material was coated with a thick molybdenum film and its mechanical and electrical properties were tested. The final aim was the evaluation of the capability of the compound to withstand the extreme energy loads present in the LHC proton accelerator. Lastly, another purpose of the thesis was to perform an analysis of the capabilities and limitations of the selected film deposition technique, which was Pulsed Laser Deposition.File | Dimensione | Formato | |
---|---|---|---|
2019_07_Romeo.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
8.76 MB
Formato
Adobe PDF
|
8.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/148909