The aim of the present master thesis was to desing a new vertebral substitute of composite material, usign CAD modeling, finite element computational analysis (Finite Element Analysis - FEA) and experimental tests at the Laboratory of the Biological Structures (LaBS) of the Politecnico di Milano. The common name of this composite material is SmartBone®and was supplied by Industrie Biomediche Insubri (IBI SA) which produces and markets it. It is mainly composed of a bovine matrix, a biodegradable polymer and collagen fibers, resulting in a structure similan to that of trabecula bone. The vertebral substitutes currently present on the market are biological, such as autograft, allograft or xenograft, synthetic type such as polymers and metal type, such as titanium and titanium alloys (Ti6Al4V). Currently, through vertebrectomy, the vertebral tract damaged or suffering from tumoral pathology is removed and replaced with one of the previous exposed solutions. The design phase of the vertebral substitute in Smartbone was organized in three main phases. The first phase involved CAD modeling of a vertebral substitute using PTC Creo Parametric. Due to a SmartBone production limit it is possible to obtain a finished product with the following dimensions: 60x30x15 mm, which correspond to length, depth and height respectively. So to cover the physiological dimensions of at least one vertebra (about 25 mm) we thought of a modular system that provided for the construction of two pieces, the male and the female, so as to reach the required height. The second phase involved performing computational simulations using a software for finite element analysis (FEA), Abaqus 2018, for compression, torsion and compression-torsion combined tests. The buondary conditions, the loads and the related friction properties at the interface between the two samples have been clearly defined, simulating the constraints to which a vertebra is subjected. The computational simulations turned out to be an excellent tool for quickly knowing the stress state of a material subjected to loads without having to physically create samples. The third and final phase involved the experimental test in the laboratory, useful for validating the computational model created. Compression tests, Torsion tests and combined compression-torsion tests were performed. The results obtained in the computational tests have shown that Smartbone is able to withstand the loads to which the spine is subjected. In particular, the compression tests have reported Von Mises stress values around 2-3 Mpa, making them acceptable. Torsion tests reported peak stresses of around 50 MPa, well beyond the material’s yield point (25 MPa). These were located mainly on the lateral surfaces of the joint of the male piece which was the most stressed piece. The compression-torsion tests, on the other hand, reported Von Mises stress values of around 27 MPa, thus being reduced compared to the previous case by about 46%. Experimental tests have shown that the areas of material wear and failure, as well as the slopes of the experimental curves were comparable with the computational tests. Through a linear regression analysis on the experimental tests, the average of the resultant elastic modulus was approximately 270 MPa, a value close to that assumed by the finite element analysis which instead was 200 MPa. Therefore the validation brought satisfactory values. For this, an alternative assembly geometry was studied. From the optimization of the joint, the results obtained, saw this new form of interlocking reach Von Mises stress values, below the yield point. For the compression test the different geometry showed no improvement; instead for the torsion and the combined compression-torsion test peak stress values of Von Mises of about 13 Mpa and 8 MPa were obtained for the male piece and the female piece respectively, thus with a reduction of about 67% and 42% respectively. For this reason, this new design solution, due to an optimization of the joint’s geometry, is presented as a proposal for future development.
Il presente lavoro di tesi magistrale si pone l’obiettivo di sviluppare e realizzare, un nuovo sostituto vertebrale di materiale composito, mediante modellazione CAD, analisi computazionale agli elementi finiti (Finite Element Analysis - FEA) e prove sperimentali presso il laboratorio di meccanica delle strutture biologiche (LaBS) del Politecnico di Milano. Il nome comune di questo materiale composito è SmartBone® ed è stato fornito da Industrie Biomediche Insubri (IBI SA) che lo produce e commercializza. Esso risulta composto principalmente da una matrice bovina, da un polimero biodegradabile e da fibre di collagene, risultando come struttura simile a quella dell’osso trabecolare. I sostituti vertebrali attualmente presenti in commercio, sono di tipo biologico come gli autograft, gli allograft o xenograft, di tipo sintetico come i polimeri e di tipo metallico, come ad esempio titanio e leghe ti titanio (Ti6Al4V). Attualmente tramite vertebrectomia, il tratto vertebrale danneggiato o affetto da patologia tumorale viene rimosso e sostituito con una delle precedenti soluzioni esposte. La fase di progettazione del sostituto vertebrale in Smartbone, è stata organizzata in tre fasi principali. La prima fase prevedeva la modellazione CAD di un sostituto vertebrale mediante PTC Creo Parametric. A causa di un limite produttivo di SmartBone® è possibile ottenere un prodotto finito con le seguenti dimensioni: 60x30x15 mm, che corrispondono rispettivamente a lunghezza, profondità ed altezza. Dunque per coprire le dimensioni fisiologiche di almeno una vertebra (circa 25 mm) si è pensato ad un sistema modulare che prevedesse la realizzazione di due pezzi, il maschio e la femmina, così da raggiungere l’altezza richiesta. La seconda fase prevedeva di effettuare simulazioni computazionali mediante l’uso di un software per l’analisi agli elementi finiti (FEA), Abaqus 2018, per prove di: compressione, torsione e compressione-torsione combinate. Le buondary conditions, i carichi e le relative proprietà di frizione all’interfaccia tra i due campioni sono state apportuanamente definite, simulando i vincoli a cui è sottoposta una vertebra. Le simulazioni computazionali sono risultate un ottimo strumento per conoscere in maniera rapida lo stato di sforzo di un materiale sottoposto a carichi senza la necessità di dover realizzare fisicamente dei campioni. La terza e ultima fase prevedeva la prova sperimentale in laboratorio, utile per validare il modello computazionale realizzato. Sono state effettuate prove di sola compressione, prove di sola torsione e prove di compressione-torsione combinate. I risultati ottenuti nelle prove computazionali hanno evidenziato che Smartbone è in grado di resistere ai carichi a cui è sottoposta la colonna vertebrale. In particolare le prove di compressione hanno riportato valori di sforzo di Von Mises nell’intorno dei 2-3 Mpa, risultando accettabili. Le prove di Torsione hanno riportato sforzi di picco di circa 50 MPa, ben oltre il limite di snervamento del materiale (25 MPa). Questi erano localizzati soprattutto sulle superfici laterali dell’incastro del pezzo maschio che risultava il pezzo più sollecitato. Le prove di compressione-torsione invece hanno riportato valori di sforzi di Von Mises pari a circa 27 MPa, essendo quindi ridotti rispetto al caso precedente di circa il 46%. Le prove sperimentali hanno evidenziato come le zone di usura del materiale e di rottura, nonchè le pendenze delle curve sperimentali sono risultate confrontabili con le prove computazionali. Tramite un’analisi di regressione lineare sulle prove sperimentali la media del modulo elastico risultato è stato pari a circa 270 MPa, un valore prossimo da quello ipotizzato dall’analisi agli elementi finiti che invece era pari a 200 MPa. Pertanto la validazione ha portato valori soddisfacenti. Per questo, è stata studiata una geometria di assemblaggio alternativa. Dall’ottimizzazione dell’incastro, i risultati ottenuti, vedevano questa nuova forma di incastro raggiungere valori di sforzo di Von Mises, al di sotto del limite di snervamento. Per la prova di compressione la geometria differente non ha evidenziato miglioramenti; invece per la torsione e la prova di compressione-torsione combinata sono stati ottenuti valori di picco di sforzi di Von Mises di circa 13 Mpa e 8 MPa per il pezzo maschio e il pezzo femmina rispettivamente, quindi con una riduzione di circa il 67% e il 42% rispettivamente. Per questo motivo questa nuova soluzione progettuale, dovuta ad una ottimizzazione della geometria dell’incastro viene presentata come proposta per uno sviluppo futuro.
Design of a new vertebral substitute with SmartBone graft : finite element analysis and experimental testing
MAURELLI, VINCENZO
2018/2019
Abstract
The aim of the present master thesis was to desing a new vertebral substitute of composite material, usign CAD modeling, finite element computational analysis (Finite Element Analysis - FEA) and experimental tests at the Laboratory of the Biological Structures (LaBS) of the Politecnico di Milano. The common name of this composite material is SmartBone®and was supplied by Industrie Biomediche Insubri (IBI SA) which produces and markets it. It is mainly composed of a bovine matrix, a biodegradable polymer and collagen fibers, resulting in a structure similan to that of trabecula bone. The vertebral substitutes currently present on the market are biological, such as autograft, allograft or xenograft, synthetic type such as polymers and metal type, such as titanium and titanium alloys (Ti6Al4V). Currently, through vertebrectomy, the vertebral tract damaged or suffering from tumoral pathology is removed and replaced with one of the previous exposed solutions. The design phase of the vertebral substitute in Smartbone was organized in three main phases. The first phase involved CAD modeling of a vertebral substitute using PTC Creo Parametric. Due to a SmartBone production limit it is possible to obtain a finished product with the following dimensions: 60x30x15 mm, which correspond to length, depth and height respectively. So to cover the physiological dimensions of at least one vertebra (about 25 mm) we thought of a modular system that provided for the construction of two pieces, the male and the female, so as to reach the required height. The second phase involved performing computational simulations using a software for finite element analysis (FEA), Abaqus 2018, for compression, torsion and compression-torsion combined tests. The buondary conditions, the loads and the related friction properties at the interface between the two samples have been clearly defined, simulating the constraints to which a vertebra is subjected. The computational simulations turned out to be an excellent tool for quickly knowing the stress state of a material subjected to loads without having to physically create samples. The third and final phase involved the experimental test in the laboratory, useful for validating the computational model created. Compression tests, Torsion tests and combined compression-torsion tests were performed. The results obtained in the computational tests have shown that Smartbone is able to withstand the loads to which the spine is subjected. In particular, the compression tests have reported Von Mises stress values around 2-3 Mpa, making them acceptable. Torsion tests reported peak stresses of around 50 MPa, well beyond the material’s yield point (25 MPa). These were located mainly on the lateral surfaces of the joint of the male piece which was the most stressed piece. The compression-torsion tests, on the other hand, reported Von Mises stress values of around 27 MPa, thus being reduced compared to the previous case by about 46%. Experimental tests have shown that the areas of material wear and failure, as well as the slopes of the experimental curves were comparable with the computational tests. Through a linear regression analysis on the experimental tests, the average of the resultant elastic modulus was approximately 270 MPa, a value close to that assumed by the finite element analysis which instead was 200 MPa. Therefore the validation brought satisfactory values. For this, an alternative assembly geometry was studied. From the optimization of the joint, the results obtained, saw this new form of interlocking reach Von Mises stress values, below the yield point. For the compression test the different geometry showed no improvement; instead for the torsion and the combined compression-torsion test peak stress values of Von Mises of about 13 Mpa and 8 MPa were obtained for the male piece and the female piece respectively, thus with a reduction of about 67% and 42% respectively. For this reason, this new design solution, due to an optimization of the joint’s geometry, is presented as a proposal for future development.File | Dimensione | Formato | |
---|---|---|---|
2019_07_Maurelli.pdf
accessibile in internet per tutti
Descrizione: Thesis text
Dimensione
43.34 MB
Formato
Adobe PDF
|
43.34 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/149071