Nowadays, the clinical application of proper substitutes for small-calibre blood vessels (i.e., with an inner diameter of less than 6 mm) represents one of the most challenging topics in biomedical research. Considering the high incidence rate of cardiovascular diseases and the continuous seeking for substitutes in this field, the preferable solution useful for damaged vessels treatment remains the use of autologous grafts, although they possess disadvantages including complexity of transplantation operations and poor availability of healthy or anatomically compatible tissue. Synthetic prostheses are used as an alternative; however, they are characterized by poor elasticity, material thrombogenicity and compliance mismatch between the natural vessel and the graft, often causing implant failure. From this point of view, Tissue Engineering stands as a valid alternative to traditional techniques. Recently, decellularization of native organs and tissues through the use of physical, chemical or enzymatic agents, emerged in this field as a possible alternative to improve the previous solutions. This method is aimed at removing the immunogenic cellular component of the tissue, thus eliminating the risk of an immune response from a possible host organism and preserving the three-dimensional architecture and chemical composition of the native extracellular matrix (ECM). The resulting product is represented by non-immunogenic biological scaffolds, with unaltered mechanical properties with respect to their tissue of origin. These scaffolds represent a good substrate for cell proliferation as they consist of ECM, which provides biochemical signals for cell adhesion, proliferation and differentiation. Following the Tissue Engineering approach, after the decellularization phase, recellularization of the obtained construct is necessary: the goal is to recreate specific organs for the patient who needs a transplant. Therefore, it is essential to repopulate the tissue with appropriate cells, that must be stimulated in order to allow the development of functional tissues or organs. The stimulation of these constructs is carried out through the use of bioreactors. A bioreactor is a device that allows to support and direct the in vitro development of functional tissues; it allows the maintenance of pseudo-physiological environmental conditions and a dynamic culture with physical-chemical stimuli that allow the structural and mechanical development of the constructs. This thesis is part of a research project concerning the realization of biological non-immunogenic substitutes for small-calibre vessels, with mechanical properties comparable to the physiological tissue, using decellularization procedure. This technique can be performed by hand and with satisfactory results, however it requires several sequential steps and, in this case, an operator-dependent approach that could affect the sterility of the final product. Given these premises, the main objective of the project is to define a decellularization protocol for small-calibre vessels that can be standardized and adapted to the use of the MiniBreath® bioreactor. In order to achieve this goal, the standard protocol for tissue decellularization developed by Tissuegraft S.r.l. (Novara) - from now on referred as “in batch” protocol - was taken as a reference. The efficiency and reproducibility of decellularization using MiniBreath® were examined through histological analyses (in particular DAPI, Haematoxylin and Eosin and Masson’s Trichrome staining were used) and the mechanical properties of the obtained constructs were evaluated through uniaxial traction tests. A preliminary fibroblast (NIH-3T3) seeding attempt was subsequently performed on the decellularized scaffold, with the aim of making vessel decellularization and repopulation sequential operations, using the confined environment provided by the MiniBreath® bioreactor. Finally, the implemented decellularization protocol has been optimized to reduce material/ solutions exposure times, with the aim to achieve comparable results with respect to the batch protocol. The efficiency of the new procedure was then evaluated through histological analysis and quantification of residual DNA. Materials and methods In this thesis work the MiniBreath® bioreactor (Harvard Apparatus Regenerative Technology) was used. This is a perfusion bioreactor, with a double culture chamber and designed for cell seeding and culture of the inner and outer surface of a tubular scaffold. Furthermore, the coupling with an external motor allows the construct to rotate around its longitudinal axis, so as to increase the diffusion of oxygen and nutrients from the culture medium to the cells of the construct. The MiniBreath® is a versatile bioreactor: the different positioning of two valves on the right and left of the culture chamber allows the creation of different hydraulic circuits. A polymeric shaft acts as support for the scaffold and it possess cannulae pieces of different diameters meant for the internal perfusion of the construct. Digital calf arteries were used in this work, considered as small calibre vessels model for their characteristic dimensions (internal diameter <4 mm). First, decellularization process was carried out using the batch protocol: this involves the use of chemical and enzymatic agents, combined with the mechanical agitation provided by a shaker. Briefly, the protocol consists of a double exposure of the native tissue to solutions of CHAPS (3-[(3-cholamidopropyl)dimethylammonium]-1 -propansulfonate) and SDS (sodium dodecylsulphate), respectively for 1h at 37 °C (Step I, Step II). Each step is followed by three consecutive 15min washes in saline phosphate buffer (PBS 1x) in order to eliminate any reagent residuals. Last step (Step III) involves the overnight use of DNase I in saline solution (NaCl, MgCl2) at room temperature (RT), followed by four 20min washes in distilled water (ddH2O). Referring to this procedure as a model, a new protocol was developed (Table II), in order to be suitable with the use of MiniBreath® perfusion bioreactor. The native digital artery sample was placed onto the polymeric shaft, secured to the cannulae and placed into the culture chamber. For the intended purpose, a set-up consisting of two independent perfusion circuits, each one driven by a different peristaltic pump, was created: the first one for the scaffold internal perfusion using the same decellularizing solutions required by the protocol in batch, the second one aimed at recirculating them in the culture chamber. Thus, the sample is subjected to treatment on both its surfaces. The efficiency of both approaches was compared by histological analysis and the constructs obtained were characterized from a mechanical point of view, through uniaxial tensile tests, using TC3 bioreactor EBERS® machine (EBERS Medical). Briefly, stress-strain curves for native and decellularized samples (both in batch and with MiniBreath®) were obtained, and materials mechanical properties were assessed: linear elastic modulus was calculated for low deformation values (E1) and for high deformation values (E2); ultimate tensile stress (σmax) and final deformation at break (εf). Through the use of a scanning electronic microscope (SEM), morphological analysis of native and decellularized tissue luminal surface was also carried out. Following the decellularization phase and prior to the repopulation experiment, scaffold and bioreactor sterilization was carried out in peracetic acid solution (0.02% v/v, 2h) and water (2h) without changing the MiniBreath® configuration. After that, the scaffold was seeded with fibroblasts (NIH-T3T) tagged with fluorescent green protein (seed density 4∙105 cells/ml) and kept in an incubator for 20h at 37 °C and 5% CO2. In this phase, the bioreactor was connected to the relative rotating motor (speed 1.6rpm). In order to assess the seeding phase efficiency, fluorescence optical microscopy analysis, histological analysis and MTS cell viability assay were carried out: briefly, digital artery samples were cut longitudinally and divided into two parts to expose their luminal surface. Both of them were placed in a different well of a multi-well culture plate and MTS solution was added. After incubation at 37°C for 3h, absorbance reading at 490nm was performed. Concerning decellularization phase optimization, a new protocol has been developed, summarized in Table III, always keeping the MiniBreath® configuration and hydraulic circuit unchanged. Finally, quantification of residual DNA was carried out through overnight digestion (55 °C) of the sample in proteinase K solution followed by protein precipitation step in NaCl saturated solution and 2-propanol. DNA was then precipitated using ethanol (70% v/v), resuspended in 20μl of RNase-free water and analysed by NanoDropTM. Results The use of the decellularization protocol with MiniBreath® reported positive and reproducible results, as verified by histological analysis. In fact, the complete removal of cells and nuclear materials, as well as a high degree of ECM integrity, is appreciated, also comparing the results to those obtained by in batch protocol (Fig. 5). Stress-strain curves resulting from uniaxial tensile tests exhibited the tissue non-linear behaviour, derived from the combined effects of elastin and collagen fibres present in tissue ECM. Mechanical properties of vessels decellularized using MiniBreath® were comparable to those of the native tissue, while the batch procedure returned stiffer samples (Fig. 3).Luminal surface morphological analysis have highlighted the differences between the two kind of samples: the decellularized tissue is characterized by a uniform but wrinkled surface, probably due to the previous dehydration process; the same structure is observed even in the native sample, but covered by a thin homogeneous layer . Preliminary repopulation of the decellularized construct did not provide the expected results: in fact, fluorescence analysis showed a small amount of nuclei and even through histological analysis it was not possible to detect the presence of a developed cellular monolayer in the vessel lumen, although the occurrence of MTS colorimetric reaction on the samples confirmed the positive outcome of the assay, indicating the presence of cell viability. Reasons for this negative outcome could be addressed to the significant duration of the decellularization protocol with MiniBreath® (72h) and to the possible presence of solvent residuals in the construct even after washing and sterilization phases. It was therefore decided to optimize the decellularization protocol, reducing its overall duration from 72h to 24h aiming to obtain comparable outcomes with respect to the in batch procedure. Results were satisfactory: histological analysis guaranteed the removal of the cellular component (Fig.6) and the absence of nuclear materials was strongly confirmed through the quantitative analysis of the residual DNA, which returned lower values compared to the threshold identified by the literature. Conclusions In the context of Vascular Tissue Engineering, the experimental work here presented aims first of all to establish an effective and reproducible protocol for the realization of decellularized biological scaffolds, in order to obtain small calibre vessels substitutes. In order to achieve this goal, the MiniBreath® perfusion bioreactor was used, exploiting its versatility to create an experimental set-up suitable for the purpose. As confirmed both by histological analysis and mechanical characterization, the primary objective was successfully achieved: the implemented protocol indeed returns comparable results with respect to the in batch procedure; concerning mechanical properties, there are no significant differences compared to the native tissue. Following the Tissue Engineering approach, a preliminary cell seeding test was carried out, using the confined MiniBreath® environment to perform sequentially decellularization, sterilization and repopulation of the construct, thus minimizing the intervention of an external operator. Finally, the optimization of the MiniBreath® decellularization protocol provided satisfactory results, comparable with those of the in batch procedure, reducing the exposure time of the material to the different solvents and the overall duration of the procedure from 72h to 24h. Histological and residual DNA content analysis confirmed the efficiency of the procedure. Following a future standardization of the optimized protocol, performing in-depth biocompatibility and cytocompatibility tests on the obtained construct would represent an interesting development to the presented work, with the final aim of carrying out a subsequent targeted repopulation through endothelial and smooth muscle cells, seeded in the inner and outer vessel surface, respectively, towards the development of in vitro small calibre vascular substitutes.
L’utilizzo clinico di validi sostituti per vasi sanguigni di piccolo calibro (aventi diametro interno inferiore a 6 mm) rappresenta ad oggi una tra le sfide più problematiche nella ricerca biomedica. Considerata l’elevata incidenza delle patologie cardiovascolari e la continua richiesta di sostituti in questo campo, la soluzione preferibile per il trattamento di vasi danneggiati rimane l’utilizzo di sostituti autologhi, sebbene questi presentino svantaggi tra cui la complessità dell’operazione necessaria al trapianto e la scarsa disponibilità di tessuto sano o anatomicamente compatibile. Protesi sintetiche sono utilizzate come alternativa, tuttavia sono caratterizzate da scarsa elasticità, trombogenicità del materiale e differenza di compliance tra il vaso naturale e il graft, spesso causando il fallimento dell’impianto. In quest’ottica, l’Ingegneria dei Tessuti si propone come valida alternativa alle tecniche tradizionali. Recentemente, la decellularizzazione di organi e tessuti nativi tramite l’utilizzo di agenti fisici, chimici o enzimatici, si è affermata in questo campo come possibile alternativa per migliorare le precedenti soluzioni. Questo metodo è volto alla rimozione della componente cellulare del tessuto, che risulta essere immunogenica, eliminando così il rischio di risposta immunitaria da parte di un eventuale organismo ospite e preservando l’architettura tridimensionale e la composizione chimica della matrice extracellulare (ECM) nativa. Il prodotto risultante è rappresentato da scaffold biologici non immunogenici e aventi proprietà meccaniche inalterate rispetto al loro tessuto di origine. Questi scaffold rappresentano un buon substrato per la proliferazione cellulare in quanto costituiti da ECM che fornisce segnali biochimici per l’adesione, la proliferazione e il differenziamento cellulare. Come previsto dall’Ingegneria dei Tessuti, in seguito alla fase di decellularizzazione è necessaria una ricellularizzazione del costrutto ottenuto: l’obiettivo di tale tecnica è quello di ricreare organi specifici per il paziente che necessita un trapianto. Pertanto, è essenziale che vengano impiegate in questa fase cellule appropriate per la ripopolamento del tessuto e che queste vengano stimolate adeguatamente al fine di permettere lo sviluppo di un tessuto o organo in grado di svolgere le proprie funzioni. La stimolazione di tali costrutti è effettuata tramite l’utilizzo di bioreattori. Un bioreattore è un dispositivo che permette di supportare e indirizzare lo sviluppo in vitro di tessuti funzionali; consente il mantenimento di condizioni ambientali pseudo-fisiologiche e una coltura dinamica con stimoli fisico-chimici che permettono la maturazione strutturale e meccanica dei costrutti. Questo lavoro di tesi si inserisce all’interno di un progetto di ricerca volto alla realizzazione di un sostituto biologico per vasi di piccolo calibro, non immunogenico e con proprietà meccaniche paragonabili a quelle dei vasi fisiologici, utilizzando la decellularizzazione. Tale tecnica può essere eseguita manualmente e con risultati soddisfacenti, tuttavia essa richiede diversi passaggi sequenziali e in questo caso un approccio operatore-dipendente che potrebbe avere ripercussioni sulla sterilità del prodotto finale. Alla luce di queste considerazioni, il principale obiettivo di questo progetto è quello di definire un protocollo di decellularizzazione per vasi di piccolo calibro, standardizzabile e adattabile all’utilizzo del bioreattore MiniBreath®. Al fine di realizzare questo scopo, si è utilizzato come modello il protocollo standard per l’ingegneria dei tessuti ideato da Tissuegraft S.r.l. (Novara), al quale si farà riferimento da qui in avanti attraverso la dicitura “in batch”. L’efficienza e la riproducibilità della decellularizzazione tramite MiniBreath® sono state esaminate attraverso analisi istologiche (in particolare DAPI, Ematossilina ed Eosina e Tricromica di Masson) e le proprietà meccaniche dei costrutti ottenuti sono state valutate attraverso test di trazione uniassiale. Una prova preliminare di semina di fibroblasti (NIH-3T3) è stata successivamente eseguita sullo scaffold decellularizzato, con l’intento di rendere sequenziali le operazioni di decellularizzazione e ripopolamento del vaso, utilizzando l’ambiente confinato fornito dal bioreattore MiniBreath®. Infine, il protocollo di decellularizzazione implementato è stato ottimizzato per ridurre i tempi di esposizione del materiale ai diversi solventi utilizzati, con l’obiettivo di raggiungere risultati paragonabili al protocollo in batch. L’efficienza della nuova procedura è stata quindi valutata attraverso analisi istologiche e quantificazione del DNA residuo. Materiali e Metodi Nel presente lavoro di tesi è stato utilizzato il bioreattore MiniBreath® (Harvard Apparatus Regenerative Technology). Questo è un bioreattore a perfusione, dotato di doppia camera di coltura e progettato per la semina cellulare e la coltura della superficie interna ed esterna di uno scaffold tubolare. Inoltre, l’accoppiamento con un motore esterno permette la rotazione del costrutto attorno al suo asse longitudinale, in modo da aumentare la diffusione di ossigeno e nutrienti dal mezzo di coltura alle cellule del costrutto. Il MiniBreath® è un bioreattore versatile: il diverso posizionamento di due valvole poste a destra e a sinistra della camera di coltura consente la creazione di diversi circuiti idraulici. La funzione di supporto per lo scaffold tubolare è svolta da un albero polimerico dotato alle sue estremità di cannule di diverso diametro per la perfusione interna del costrutto. In questo lavoro sono state utilizzate arterie digitali di vitello, considerate come vasi di piccolo calibro date le loro dimensioni caratteristiche (diametro interno <4 mm). La decellularizzazione è stata effettuata in primo luogo utilizzando il protocollo in batch (riassunto in Tabella I): questo prevede l’utilizzo di agenti chimici ed enzimatici, combinato con l’agitazione meccanica fornita da uno shaker. In breve, il protocollo consiste in una doppia esposizione del tessuto nativo a soluzioni di CHAPS (3-[(3-cholamidopropyl)dimetilammonio]-1 propansolfonato) ed SDS (sodio dodecilsolfato), rispettivamente per 1h alla temperatura di 37°C (Step I, Step II). Ogni passaggio è seguito da 3 lavaggi di 15min in tampone fosfato salino (PBS 1x) per eliminare eventuali residui di reagenti utilizzati. L’ultimo passaggio (Step III) prevede l’utilizzo overnight di DNAse I in soluzione salina (NaCl, MgCl2) a temperatura ambiente (RT), seguito da 4 lavaggi di 20min in acqua distillata (ddH2O). Utilizzando tale procedura come modello, è stato ideato un nuovo protocollo (Tabella II), al fine di adattarlo all’impiego del bioreattore a perfusione MiniBreath®. Il campione di arteria digitale nativa viene posizionato sull’albero polimerico, assicurato alle cannule e posto nella camera di coltura. Per lo scopo proposto si è realizzato un set-up costituito da due circuiti di perfusione indipendenti, ciascuno azionato da una diversa pompa peristaltica: il primo per la perfusione interna dello scaffold con le medesime soluzioni decellularizzanti previste dal protocollo in batch, il secondo finalizzato al ricircolo delle stesse nella camera di coltura. In questo modo, il campione è sottoposto al trattamento su entrambe le sue superfici (Fig.2 ). L’efficienza dei due approcci è stata paragonata attraverso analisi istologiche e i costrutti ottenuti sono stati caratterizzati da un punto di vista meccanico, attraverso prove di trazione uniassiale, utilizzando il macchinario TC3 bioreactor EBERS® (EBERS Medical). Si sono ricavate le curve sforzo-deformazione per i campioni nativi e decellularizzati con i due diversi protocolli, ricavando da esse le principali proprietà meccaniche dei materiali: nelle regioni lineari è stato calcolato il modulo elastico a basse deformazioni (E1) e ad elevate deformazioni (E2); sforzo a rottura (σmax) e deformazione a rottura (εf). Attraverso l’uso di un microscopio a scansione elettronica, è stata svolta inoltre un’analisi morfologica della superficie luminale del tessuto nativo e decellularizzato. A seguito della fase di decellularizzazione e precedentemente all’ esperimento di ripopolamento, è stata effettuata la sterilizzazione di scaffold e bioreattore in soluzione di acido peracetico (0,02% v/v, 2h) e acqua (2h) mantenendo invariata la configurazione del MiniBreath®. In seguito, lo scaffold è stato seminato con fibroblasti (NIH-T3T) taggati con proteina verde fluorescente (densità di semina 4∙105 cellule/ml) e posto in un incubatore per 20h a 37°C e al 5% di CO2. In questa fase, il bioreattore è stato collegato al relativo motore rotante (velocità 1,6rpm). Al fine di verificare l’efficienza della fase di semina, sono state effettuate analisi al microscopio ottico in fluorescenza, analisi istologiche e saggio di vitalità cellulare MTS: in breve, i campioni di arteria digitale sono stati tagliati longitudinalmente e divisi in due parti per esporre la superficie luminale. Ciascuna delle due parti è stata posta in un diverso pozzetto di una piastra ed è stata aggiunta la soluzione di MTS. Il tutto è stato incubato per 3h, per poi analizzare l’assorbanza a 490nm. Per la fase di ottimizzazione del processo di decellularizzazione è stato ideato un nuovo protocollo, riassunto in Tabella III, mantenendo invariato il circuito collegato al MiniBreath®.Infine, la quantificazione del DNA residuo è stata effettuata tramite la digestione overnight (55°C) del campione in una soluzione di proteinasi K seguita da uno step di precipitazione delle proteine in soluzione satura di NaCl e 2-propanolo. Il DNA è stato poi precipitato usando etanolo (70% v/v), risospeso in 20μl di acqua RNase-free e analizzato tramite NanoDropTM. Risultati L’utilizzo del protocollo di decellularizzazione con MiniBreath® ha riportato esiti positivi e riproducibili, come verificato dalle analisi istologiche effettuate sui campioni. Si apprezza infatti la completa rimozione di cellule e materiale nucleare, nonché un elevato grado di conservazione della matrice extracellulare, anche paragonando i risultati a quelli ottenuti tramite protocollo in batch (Fig. 4). Le curve sforzo-deformazione risultanti dalle prove di trazione uniassiale evidenziano un comportamento marcatamente non lineare, dovuto agli effetti sinergici di elastina e collagene nella matrice del tessuto esaminato. Le proprietà meccaniche dei vasi decellularizzati utilizzando il MiniBreath® sono comparabili a quelle del tessuto nativo, mentre la procedura in batch sembrerebbe restituire campioni più rigidi (Fig. 3). Le analisi morfologiche della superficie luminale hanno evidenziato le differenze fra i due tipi di campioni: il tessuto decellularizzato è caratterizzato da una superficie uniforme ma grinzosa, probabilmente dovuta al precedente processo di disidratazione; nel campione nativo si osserva la medesima struttura, ricoperta da una sottile patina omogenea (Fig.5). La prova preliminare di ripopolamento del costrutto decellularizzato non ha fornito i risultati attesi: le analisi in fluorescenza hanno evidenziato infatti un esiguo numero di nuclei e tramite le analisi istologiche non è stato possibile rilevare la presenza di un monolayer cellulare sviluppato nel lume del vaso, sebbene la colorazione del tessuto che conferma l’esito positivo del saggio MTS indichi la presenza di vitalità cellulare in questa zona. Le ragioni di questo esito negativo potrebbero essere attribuite alla consistente durata del protocollo di decellularizzazione con MiniBreath® (72h) e alla possibile presenza di tracce di solventi nel costrutto anche in seguito alle fasi di lavaggio e sterilizzazione. Si è quindi deciso di effettuare una prova finalizzata all’ottimizzazione del protocollo di decellularizzazione, riducendo i tempi da 72h a 24h con l’intenzione di ottenere risultati comparabili a quelli della procedura in batch. Gli esiti sono stati soddisfacenti: le analisi istologiche hanno garantito la rimozione della componente cellulare (Fig.6) e l’assenza di materiale nucleare è stata confermata attraverso l’analisi quantitativa del DNA residuo, che ha restituito valori inferiori alla soglia individuata dalla letteratura. Conclusioni Inserendosi nel contesto dell’Ingegneria Tissutale Vascolare, il presente lavoro sperimentale si propone in primo luogo di stabilire un protocollo efficace e riproducibile per la realizzazione di scaffold biologici decellularizzati, al fine di realizzare sostituti vascolari di piccolo calibro. Per raggiungere tale obiettivo, è stato utilizzato il bioreattore a perfusione MiniBreath®, sfruttando la sua caratteristica versatilità per creare un circuito idraulico adatto allo scopo. Come confermato dalle analisi istologiche e successivamente dalla caratterizzazione meccanica, l’obiettivo primario si può dire raggiunto con successo: il protocollo implementato restituisce infatti risultati comparabili a quelli ottenuti con la procedura in batch; per quanto riguarda le proprietà meccaniche, non si riscontrano differenze significative rispetto al tessuto nativo. Seguendo l’iter dell’Ingegneria dei Tessuti, è stata effettuata una prova preliminare di semina cellulare, utilizzando l’ambiente confinato del MiniBreath® per svolgere sequenzialmente le operazioni di decellularizzazione, sterilizzazione e ripopolamento del costrutto, minimizzando l’intervento di un operatore esterno. In ultima analisi, l’ottimizzazione del protocollo di decellularizzazione con MiniBreath® ha fornito risultati soddisfacenti e confrontabili con quelli della procedura in batch, riducendo in primo luogo i tempi di esposizione del materiale ai diversi solventi e, più in generale, la durata complessiva della procedura da 72h a 24h. Analisi istologiche e del DNA residuo hanno confermato nuovamente l’efficacia della procedura. A seguito della futura standardizzazione del protocollo ottimizzato, un’approfondita prova di biocompatibilità del costrutto ottenuto rappresenterebbe un interessante sviluppo al lavoro presentato, con il fine di effettuare un successivo ripopolamento mirato attraverso la semina cellule endoteliali e muscolari, che avvicini ulteriormente allo sviluppo in vitro di un sostituto vascolare di piccolo calibro.
Decellularized bovine digital arteries : towards the development of in vitro small-calibre vascular substitutes
BIANCHI, ALESSANDRO
2018/2019
Abstract
Nowadays, the clinical application of proper substitutes for small-calibre blood vessels (i.e., with an inner diameter of less than 6 mm) represents one of the most challenging topics in biomedical research. Considering the high incidence rate of cardiovascular diseases and the continuous seeking for substitutes in this field, the preferable solution useful for damaged vessels treatment remains the use of autologous grafts, although they possess disadvantages including complexity of transplantation operations and poor availability of healthy or anatomically compatible tissue. Synthetic prostheses are used as an alternative; however, they are characterized by poor elasticity, material thrombogenicity and compliance mismatch between the natural vessel and the graft, often causing implant failure. From this point of view, Tissue Engineering stands as a valid alternative to traditional techniques. Recently, decellularization of native organs and tissues through the use of physical, chemical or enzymatic agents, emerged in this field as a possible alternative to improve the previous solutions. This method is aimed at removing the immunogenic cellular component of the tissue, thus eliminating the risk of an immune response from a possible host organism and preserving the three-dimensional architecture and chemical composition of the native extracellular matrix (ECM). The resulting product is represented by non-immunogenic biological scaffolds, with unaltered mechanical properties with respect to their tissue of origin. These scaffolds represent a good substrate for cell proliferation as they consist of ECM, which provides biochemical signals for cell adhesion, proliferation and differentiation. Following the Tissue Engineering approach, after the decellularization phase, recellularization of the obtained construct is necessary: the goal is to recreate specific organs for the patient who needs a transplant. Therefore, it is essential to repopulate the tissue with appropriate cells, that must be stimulated in order to allow the development of functional tissues or organs. The stimulation of these constructs is carried out through the use of bioreactors. A bioreactor is a device that allows to support and direct the in vitro development of functional tissues; it allows the maintenance of pseudo-physiological environmental conditions and a dynamic culture with physical-chemical stimuli that allow the structural and mechanical development of the constructs. This thesis is part of a research project concerning the realization of biological non-immunogenic substitutes for small-calibre vessels, with mechanical properties comparable to the physiological tissue, using decellularization procedure. This technique can be performed by hand and with satisfactory results, however it requires several sequential steps and, in this case, an operator-dependent approach that could affect the sterility of the final product. Given these premises, the main objective of the project is to define a decellularization protocol for small-calibre vessels that can be standardized and adapted to the use of the MiniBreath® bioreactor. In order to achieve this goal, the standard protocol for tissue decellularization developed by Tissuegraft S.r.l. (Novara) - from now on referred as “in batch” protocol - was taken as a reference. The efficiency and reproducibility of decellularization using MiniBreath® were examined through histological analyses (in particular DAPI, Haematoxylin and Eosin and Masson’s Trichrome staining were used) and the mechanical properties of the obtained constructs were evaluated through uniaxial traction tests. A preliminary fibroblast (NIH-3T3) seeding attempt was subsequently performed on the decellularized scaffold, with the aim of making vessel decellularization and repopulation sequential operations, using the confined environment provided by the MiniBreath® bioreactor. Finally, the implemented decellularization protocol has been optimized to reduce material/ solutions exposure times, with the aim to achieve comparable results with respect to the batch protocol. The efficiency of the new procedure was then evaluated through histological analysis and quantification of residual DNA. Materials and methods In this thesis work the MiniBreath® bioreactor (Harvard Apparatus Regenerative Technology) was used. This is a perfusion bioreactor, with a double culture chamber and designed for cell seeding and culture of the inner and outer surface of a tubular scaffold. Furthermore, the coupling with an external motor allows the construct to rotate around its longitudinal axis, so as to increase the diffusion of oxygen and nutrients from the culture medium to the cells of the construct. The MiniBreath® is a versatile bioreactor: the different positioning of two valves on the right and left of the culture chamber allows the creation of different hydraulic circuits. A polymeric shaft acts as support for the scaffold and it possess cannulae pieces of different diameters meant for the internal perfusion of the construct. Digital calf arteries were used in this work, considered as small calibre vessels model for their characteristic dimensions (internal diameter <4 mm). First, decellularization process was carried out using the batch protocol: this involves the use of chemical and enzymatic agents, combined with the mechanical agitation provided by a shaker. Briefly, the protocol consists of a double exposure of the native tissue to solutions of CHAPS (3-[(3-cholamidopropyl)dimethylammonium]-1 -propansulfonate) and SDS (sodium dodecylsulphate), respectively for 1h at 37 °C (Step I, Step II). Each step is followed by three consecutive 15min washes in saline phosphate buffer (PBS 1x) in order to eliminate any reagent residuals. Last step (Step III) involves the overnight use of DNase I in saline solution (NaCl, MgCl2) at room temperature (RT), followed by four 20min washes in distilled water (ddH2O). Referring to this procedure as a model, a new protocol was developed (Table II), in order to be suitable with the use of MiniBreath® perfusion bioreactor. The native digital artery sample was placed onto the polymeric shaft, secured to the cannulae and placed into the culture chamber. For the intended purpose, a set-up consisting of two independent perfusion circuits, each one driven by a different peristaltic pump, was created: the first one for the scaffold internal perfusion using the same decellularizing solutions required by the protocol in batch, the second one aimed at recirculating them in the culture chamber. Thus, the sample is subjected to treatment on both its surfaces. The efficiency of both approaches was compared by histological analysis and the constructs obtained were characterized from a mechanical point of view, through uniaxial tensile tests, using TC3 bioreactor EBERS® machine (EBERS Medical). Briefly, stress-strain curves for native and decellularized samples (both in batch and with MiniBreath®) were obtained, and materials mechanical properties were assessed: linear elastic modulus was calculated for low deformation values (E1) and for high deformation values (E2); ultimate tensile stress (σmax) and final deformation at break (εf). Through the use of a scanning electronic microscope (SEM), morphological analysis of native and decellularized tissue luminal surface was also carried out. Following the decellularization phase and prior to the repopulation experiment, scaffold and bioreactor sterilization was carried out in peracetic acid solution (0.02% v/v, 2h) and water (2h) without changing the MiniBreath® configuration. After that, the scaffold was seeded with fibroblasts (NIH-T3T) tagged with fluorescent green protein (seed density 4∙105 cells/ml) and kept in an incubator for 20h at 37 °C and 5% CO2. In this phase, the bioreactor was connected to the relative rotating motor (speed 1.6rpm). In order to assess the seeding phase efficiency, fluorescence optical microscopy analysis, histological analysis and MTS cell viability assay were carried out: briefly, digital artery samples were cut longitudinally and divided into two parts to expose their luminal surface. Both of them were placed in a different well of a multi-well culture plate and MTS solution was added. After incubation at 37°C for 3h, absorbance reading at 490nm was performed. Concerning decellularization phase optimization, a new protocol has been developed, summarized in Table III, always keeping the MiniBreath® configuration and hydraulic circuit unchanged. Finally, quantification of residual DNA was carried out through overnight digestion (55 °C) of the sample in proteinase K solution followed by protein precipitation step in NaCl saturated solution and 2-propanol. DNA was then precipitated using ethanol (70% v/v), resuspended in 20μl of RNase-free water and analysed by NanoDropTM. Results The use of the decellularization protocol with MiniBreath® reported positive and reproducible results, as verified by histological analysis. In fact, the complete removal of cells and nuclear materials, as well as a high degree of ECM integrity, is appreciated, also comparing the results to those obtained by in batch protocol (Fig. 5). Stress-strain curves resulting from uniaxial tensile tests exhibited the tissue non-linear behaviour, derived from the combined effects of elastin and collagen fibres present in tissue ECM. Mechanical properties of vessels decellularized using MiniBreath® were comparable to those of the native tissue, while the batch procedure returned stiffer samples (Fig. 3).Luminal surface morphological analysis have highlighted the differences between the two kind of samples: the decellularized tissue is characterized by a uniform but wrinkled surface, probably due to the previous dehydration process; the same structure is observed even in the native sample, but covered by a thin homogeneous layer . Preliminary repopulation of the decellularized construct did not provide the expected results: in fact, fluorescence analysis showed a small amount of nuclei and even through histological analysis it was not possible to detect the presence of a developed cellular monolayer in the vessel lumen, although the occurrence of MTS colorimetric reaction on the samples confirmed the positive outcome of the assay, indicating the presence of cell viability. Reasons for this negative outcome could be addressed to the significant duration of the decellularization protocol with MiniBreath® (72h) and to the possible presence of solvent residuals in the construct even after washing and sterilization phases. It was therefore decided to optimize the decellularization protocol, reducing its overall duration from 72h to 24h aiming to obtain comparable outcomes with respect to the in batch procedure. Results were satisfactory: histological analysis guaranteed the removal of the cellular component (Fig.6) and the absence of nuclear materials was strongly confirmed through the quantitative analysis of the residual DNA, which returned lower values compared to the threshold identified by the literature. Conclusions In the context of Vascular Tissue Engineering, the experimental work here presented aims first of all to establish an effective and reproducible protocol for the realization of decellularized biological scaffolds, in order to obtain small calibre vessels substitutes. In order to achieve this goal, the MiniBreath® perfusion bioreactor was used, exploiting its versatility to create an experimental set-up suitable for the purpose. As confirmed both by histological analysis and mechanical characterization, the primary objective was successfully achieved: the implemented protocol indeed returns comparable results with respect to the in batch procedure; concerning mechanical properties, there are no significant differences compared to the native tissue. Following the Tissue Engineering approach, a preliminary cell seeding test was carried out, using the confined MiniBreath® environment to perform sequentially decellularization, sterilization and repopulation of the construct, thus minimizing the intervention of an external operator. Finally, the optimization of the MiniBreath® decellularization protocol provided satisfactory results, comparable with those of the in batch procedure, reducing the exposure time of the material to the different solvents and the overall duration of the procedure from 72h to 24h. Histological and residual DNA content analysis confirmed the efficiency of the procedure. Following a future standardization of the optimized protocol, performing in-depth biocompatibility and cytocompatibility tests on the obtained construct would represent an interesting development to the presented work, with the final aim of carrying out a subsequent targeted repopulation through endothelial and smooth muscle cells, seeded in the inner and outer vessel surface, respectively, towards the development of in vitro small calibre vascular substitutes.File | Dimensione | Formato | |
---|---|---|---|
2019_07_Bianchi.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
4.17 MB
Formato
Adobe PDF
|
4.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/149083