Polymer Electrolyte Membrane Fuel Cells (PEMFCs) are a promising technology for clean and competitive electric power generation, due to their limited pollutant emission and high theoretical efficiency. The microporous layer (MPL) is a key component due to its beneficial influence in promoting a correct gas distribution on the membrane electrode assembly (MEA) surface and for enhancing water removal capabilities. In this thesis, the implementation of innovative materials such as graphene nanoplatelets in combination with conventional carbon black powder is evaluated aiming to improve MPLs water management and electrochemical performances. Nine different inks were prepared by mixing a solution of deionized water, isopropyl alcohol and fluorinated ethylene propylene (FEP), with fixed quantities of carbon nanotubes, graphene nanoplatelets and carbon black in various combinations. Therefore, the MPL was obtained by blade-coating the ink onto a macroporous substrate (GDL) and finally thermally processed. Morphological and electrical characterizations of the MPLs were performed by static contact angle, optical and scanning electron microscopy, mercury intrusion porosimetry, water permeability, electrical resistivity, X-ray diffraction analysis and thermogravimetry. The electrochemical characterization was analysed by recording polarization curves under different operating conditions of relative humidity and temperature. Graphene as MPL main constituent can represent a solid proposal for the achievement of competitive performances at low relative humidity conditions, due to its more compact structure that prevents excessive membrane dehydration. The addition of CB to the samples seems to have opposite consequences: the introduction of micropores present in CB and surface agglomeration cracks helps accelerating the ejection of water from the MPL and enhancing the diffusion of oxygen toward the catalyst layer, thus promoting a quick and efficient removal of water in excess, delaying flooding phenomena and improving overall mass transfer performances. The same properties, however, promote a faster membrane dehydration with consequent increase of ohmic losses.
Una delle tecnologie più promettenti e competitive per la generazione di energia elettrica sostenibile è rappresentata dalle Polymer Electrolyte Membrane Fuel Cells (PEMFCs), caratterizzate da emissioni inquinanti quasi nulle e da un’elevata efficienza teorica. Componente fondamentale è il microporus layer (MPL), il quale permette una corretta distribuzione dei gas sulla superficie del membrane electrode assembly (MEA) e migliora le capacità di rimozione dell’acqua in eccesso. Nella tesi in esame viene valutata l'implementazione di materiali innovativi, come le nanoplatelets di grafene in combinazione con la convenzionale polvere di carbon black, allo scopo di migliorare la gestione dell'acqua e le prestazioni elettrochimiche dell’MPL. Sono stati preparati nove diversi inchiostri miscelando una soluzione di acqua deionizzata, alcol isopropilico e etilen-propilene fluorurato (FEP), con quantità fisse di nanotubi di carbonio, nano-particelle di grafene e carbon black in varie combinazioni. In particolare, l'MPL è stato ottenuto mediante la deposizione dell'inchiostro su un substrato macroporoso (GDL) attraverso la tecnica del blade coating e infine trattato termicamente. Le caratterizzazioni morfologiche ed elettriche degli MPL sono state eseguite mediante angolo di contatto statico, microscopia a scansione elettronica e ottica, porosimetria a intrusione di mercurio, permeabilità all'acqua, resistività elettrica, analisi di diffrazione ai raggi X e termogravimetria. La caratterizzazione elettrochimica è stata analizzata registrando le curve di polarizzazione in diverse condizioni operative di umidità relativa e temperatura. Il grafene, utilizzato come componente principale dell’MPL, grazie alla sua struttura più compatta che impedisce un'eccessiva disidratazione della membrana, rappresenta una solida proposta per il raggiungimento di prestazioni competitive a basse condizioni di umidità relativa. L'aggiunta di CB ai campioni ha conseguenze opposte tra loro: l'introduzione di micropori e di cricche superficiali accelera l'espulsione dell'acqua dall’MPL ed aumenta la diffusione dell'ossigeno verso lo strato di catalizzatore, promuovendo così una rapida ed efficiente rimozione dell’acqua in eccesso, ritardando i fenomeni di allagamento e migliorando così le prestazioni complessive nel trasferimento di massa. Le stesse proprietà, tuttavia, favoriscono una rapida disidratazione della membrana con conseguente aumento delle perdite ohmiche.
Innovative graphene-based microporous layer for enhanced performance in polymer electrolyte membrane fuel cells
PATRIGNANI, STEFANO
2018/2019
Abstract
Polymer Electrolyte Membrane Fuel Cells (PEMFCs) are a promising technology for clean and competitive electric power generation, due to their limited pollutant emission and high theoretical efficiency. The microporous layer (MPL) is a key component due to its beneficial influence in promoting a correct gas distribution on the membrane electrode assembly (MEA) surface and for enhancing water removal capabilities. In this thesis, the implementation of innovative materials such as graphene nanoplatelets in combination with conventional carbon black powder is evaluated aiming to improve MPLs water management and electrochemical performances. Nine different inks were prepared by mixing a solution of deionized water, isopropyl alcohol and fluorinated ethylene propylene (FEP), with fixed quantities of carbon nanotubes, graphene nanoplatelets and carbon black in various combinations. Therefore, the MPL was obtained by blade-coating the ink onto a macroporous substrate (GDL) and finally thermally processed. Morphological and electrical characterizations of the MPLs were performed by static contact angle, optical and scanning electron microscopy, mercury intrusion porosimetry, water permeability, electrical resistivity, X-ray diffraction analysis and thermogravimetry. The electrochemical characterization was analysed by recording polarization curves under different operating conditions of relative humidity and temperature. Graphene as MPL main constituent can represent a solid proposal for the achievement of competitive performances at low relative humidity conditions, due to its more compact structure that prevents excessive membrane dehydration. The addition of CB to the samples seems to have opposite consequences: the introduction of micropores present in CB and surface agglomeration cracks helps accelerating the ejection of water from the MPL and enhancing the diffusion of oxygen toward the catalyst layer, thus promoting a quick and efficient removal of water in excess, delaying flooding phenomena and improving overall mass transfer performances. The same properties, however, promote a faster membrane dehydration with consequent increase of ohmic losses.File | Dimensione | Formato | |
---|---|---|---|
2019_07_Patrignani.pdf
solo utenti autorizzati dal 11/07/2022
Descrizione: Testo della tesi
Dimensione
5.9 MB
Formato
Adobe PDF
|
5.9 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/149363