Paraffin-based fuels offer fast regression rate disclosing attractive perspective for high-thrust hybrid rocket engines. While attractive in terms of the solid fuel ballistic response, paraffin-based fuels feature poor mechanical properties hindering their application in operating systems. In this work, the mechanical reinforcement of the paraffin-based fuel is pursued by an innovative method based on 3D printed cellular structures embedded in the solid fuel grain. The solid fuel grains reinforced by this method are named armored grains The selected structures are designed starting from different types of lattices (triply periodic minimal surfaces and honeycomb-like structures) printed in polylactic acid (PLA) with an infill of 15%. In the analysis, both mechanical and ballistic properties of the fuel grain are considered. Tested paraffin-based fuels include macro- (JW1) and microcrystalline (W1) waxes. Compression tests (1 mm/s, ISO 604 standard) show that, in the case of the W1 with a gyroid internal frame, the Young modulus exhibits an increment of about 2.5% and the yield stress is enhanced of 60% with respect to the pristine W1. For the JW1 paraffin embedding the same structure, the Young modulus results comparable to the one of the pure paraffin, though, the yield stress shows an increase of about 152%. The investigated armored grains show Young moduli comparable with the one of the paraffin wax, instead, the yield stresses result to be enhanced by the presence of the cellular structure. Moreover, the typical problem related to the brittle behavior of the wax is completely overcame. The ballistic response of armored grains was evaluated at lab-scale taking the JW1 as the baseline formulation. The firing tests were performed with an oxidizer mass flow rate of 5 g/s. All the armored grains feature a substantial increment of the regression rate over the baseline. This result definitely proves that the use of reinforcing structures with paraffin-based fuels does not reduce the entrainment phenomenon. On the contrary, the irregular regression surface created by the reinforcing structure generate flow turbulence yielding to improved heat transfer and fuel/oxidizer mixing. These effects, in turn, produce the observed regression rate enhancement.
I carburanti a base di paraffina offrono un alto tasso di regressione del combustibile solido che rivela una prospettiva attraente per i motori a razzo ibridi ad alta spinta. Sebbene allettanti in termini di risposta balistica del combustibile solido, i carburanti a base di paraffina presentano scarse proprietà meccaniche che ne ostacolano l'applicazione nei sistemi operativi. In questo lavoro, il rinforzo meccanico del combustibile paraffinico è conseguito da un metodo innovativo basato su strutture cellulari stampate in 3D incorporate nel combustibile solido. I grani di combustibile rinforzati con questo metodo sono chiamati grani armati. Le strutture selezionate sono progettate a partire da diversi tipi di reticoli (superfici minime tripli-periodiche e strutture a nido d'ape) stampati in acido polilattico (PLA) con un fattore di riempimento (infill) del 15%. Nell'analisi, vengono considerate sia le proprietà meccaniche che quelle balistiche del grano di combustibile. I carburanti a base di paraffina testati includono cere macro- (JW1) e microcristalline (W1). I test di compressione (1 mm/s, standard ISO 604) rivelano che, nel caso della W1 con un giroide come intelaiatura interna, il modulo Young mostra un incremento di circa 2.5% e lo sforzo di snervamento è aumentato del 60% rispetto alla sola paraffina. Per la paraffina JW1 che incorpora la stessa struttura, il modulo Young risulta paragonabile a quello della paraffina pura, tuttavia, lo sforzo di snervamento esibisce un aumento circa del 152%. I grani armati studiati mostrano moduli di Young comparabili a quello della sola cera, invece, gli sforzi di snervamento risultano aumentati dalla presenza della struttura cellulare. Inoltre, il tipico problema correlato alla fragilità della cera si dimostra essere completamente superato. La risposta balistica dei grani armati è stata valutata in laboratorio prendendo la JW1 come formulazione di base. I test di sparo sono stati eseguiti con un flusso di ossidante di 5 g/s. Tutti i grani armati presentano un sostanziale incremento del tasso di regressione del combustibile solido. Questo risultato dimostra definitivamente che l'uso di strutture di rinforzo con carburanti a base di paraffina non riduce il fenomeno dell'entrainment. Al contrario, la superficie di regressione irregolare creata dalla struttura di rinforzo genera turbolenza del flusso che porta a un maggiore trasferimento di calore e una migliore miscelazione di combustibile ed ossidante. Questi effetti, a loro volta, migliorano il tasso di regressione.
Effects of reinforcing structures geometry on mechanical and ballistic properties of paraffin-based fuels
PAROLINI, SIMONE
2018/2019
Abstract
Paraffin-based fuels offer fast regression rate disclosing attractive perspective for high-thrust hybrid rocket engines. While attractive in terms of the solid fuel ballistic response, paraffin-based fuels feature poor mechanical properties hindering their application in operating systems. In this work, the mechanical reinforcement of the paraffin-based fuel is pursued by an innovative method based on 3D printed cellular structures embedded in the solid fuel grain. The solid fuel grains reinforced by this method are named armored grains The selected structures are designed starting from different types of lattices (triply periodic minimal surfaces and honeycomb-like structures) printed in polylactic acid (PLA) with an infill of 15%. In the analysis, both mechanical and ballistic properties of the fuel grain are considered. Tested paraffin-based fuels include macro- (JW1) and microcrystalline (W1) waxes. Compression tests (1 mm/s, ISO 604 standard) show that, in the case of the W1 with a gyroid internal frame, the Young modulus exhibits an increment of about 2.5% and the yield stress is enhanced of 60% with respect to the pristine W1. For the JW1 paraffin embedding the same structure, the Young modulus results comparable to the one of the pure paraffin, though, the yield stress shows an increase of about 152%. The investigated armored grains show Young moduli comparable with the one of the paraffin wax, instead, the yield stresses result to be enhanced by the presence of the cellular structure. Moreover, the typical problem related to the brittle behavior of the wax is completely overcame. The ballistic response of armored grains was evaluated at lab-scale taking the JW1 as the baseline formulation. The firing tests were performed with an oxidizer mass flow rate of 5 g/s. All the armored grains feature a substantial increment of the regression rate over the baseline. This result definitely proves that the use of reinforcing structures with paraffin-based fuels does not reduce the entrainment phenomenon. On the contrary, the irregular regression surface created by the reinforcing structure generate flow turbulence yielding to improved heat transfer and fuel/oxidizer mixing. These effects, in turn, produce the observed regression rate enhancement.File | Dimensione | Formato | |
---|---|---|---|
S_Parolini_Thesis.pdf
solo utenti autorizzati dal 20/09/2022
Descrizione: Testo della tesi
Dimensione
37.78 MB
Formato
Adobe PDF
|
37.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/149484