This work is devoted to the development of a compact laser system capable of generate high-energy ultrashort pulses at around 1030 nm with a sufficient bandwidth for stand-off detection and location of hazardous biological agents through coherent Raman spectroscopy. Infectious microbes or toxins have been used for bioterrorism, such as the 22 cases of anthrax were identified in USA in 2001. Currently used methods, such as mass spectrometry and DNA sequencing, are highly sensitive but they are laboratory-based and require contact with contaminants. On the contrary, laser-based configurations (LIDAR) are able to rapidly monitor large areas from a safe distance. The aim is to arrange an optical setup that originates high-energy pulses which are close to be transform-limited, in order to stimulate intense CARS signals from samples. We first employed a system based on Herriott-type multipass cells, described in the first chapter, in which spectral broadening is exploited through self-phase modulation. We actually used two multipass cells accompanied by two pairs of chirped mirrors for pulse compression: we obtained a train of 11 µJ pulses with a duration of about 25 fs and a spectral extension from 950 nm to 1200 nm. The second system for spectral broadening that we developed is based on the exploitation of self-phase modulation in a hollow-core hypocycloidal fiber filled with a noble gas, in our case Argon. The setup is described in the second chapter and is constituted by such kind of fiber followed by a multipass cell. With a gas pressure of 10 atmospheres, we obtained 14 µJ pulses characterised by a duration of around 30 fs and a bandwidth extending from 950 nm to 1150 nm. We also developed a FROG setup for pulse reconstruction, based on a SHG configuration: we applied it to the laser system described in the first chapter for the measurement of pulses duration. The fourth chapter of this work describes the training of a classification model developed through machine learning in Matlab environment to be used to identify CARS spectra generated by simulants of chemical contaminants.
Questo lavoro è orientato allo sviluppo di un sistema laser compatto, capace di generare impulsi ultrabrevi ad alta energia con uno spettro sufficientemente ampio intorno ai 1030 nm per la detezione a distanza e l’identificazione di agenti biologici pericolosi attraverso la spettroscopia Raman coerente. Microbi infettivi e tossine sono infatti stati usati per scopi terroristici, come i 22 casi di uso di antrace identificati negli USA nel 2001. I metodi correntemente usati, come la spettroscopia di massa o l’analisi del DNA, sono estremamente sensibili ma rappresentano tecniche di laboratorio e richiedono contatto con i contaminanti. Al contrario, configurazioni laser (LIDAR) sono capaci di monitorare rapidamente aree estese a distanza di sicurezza. Lo scopo del lavoro è di sviluppare un sistema ottico che generi impulsi ad alta energia in grado di stimolare spettri CARS sufficientemente intensi dai campioni. È stata dapprima impiegata una configurazione basata su celle multipasso di Herriott, descritta nel primo capitolo, nella quale l’allargamento spettrale è ottenuto attraverso self-phase modulation. Sono state usate due celle multipasso seguite da due coppie di chirped mirrors per la compressione dell’impulso: sono stati ottenuti impulsi a 11 µJ di energia con una durata di 25 fs e un’estensione spettrale da 950 nm a 1200 nm. Nel secondo sistema utilizzato, descritto nel secondo capitolo, l’allargamento spettrale degli impulsi è stato ottenuto per self-phase modulation in una fibra cava ipocicloidale contenente Argon, seguita da una cella multipasso. Ad una pressione del gas di 10 atmosfere sono stati ottenuti impulsi a 14 µJ di energia, caratterizzati da una durata di circa 30 fs ed estensione spettrale da 950 nm a 1150 nm. È stato inoltre sviluppato un apparato FROG per la caratterizzazione degli impulsi, basato su una configurazione di tipo SHG: è stato applicato al sistema laser descritto nel primo capitolo per la misura della durata degli impulsi. Infine, il quarto capitolo descrive la generazione di un modello di classificazione in Matlab, da essere usato per l’identificazione di spettri CARS generati da simulanti di contaminanti chimici.
Ultrafast laser source based on solid-state or hybrid nonlinear compression for remote detection of biological hazards
PASSARELLA, DAVIDE
2018/2019
Abstract
This work is devoted to the development of a compact laser system capable of generate high-energy ultrashort pulses at around 1030 nm with a sufficient bandwidth for stand-off detection and location of hazardous biological agents through coherent Raman spectroscopy. Infectious microbes or toxins have been used for bioterrorism, such as the 22 cases of anthrax were identified in USA in 2001. Currently used methods, such as mass spectrometry and DNA sequencing, are highly sensitive but they are laboratory-based and require contact with contaminants. On the contrary, laser-based configurations (LIDAR) are able to rapidly monitor large areas from a safe distance. The aim is to arrange an optical setup that originates high-energy pulses which are close to be transform-limited, in order to stimulate intense CARS signals from samples. We first employed a system based on Herriott-type multipass cells, described in the first chapter, in which spectral broadening is exploited through self-phase modulation. We actually used two multipass cells accompanied by two pairs of chirped mirrors for pulse compression: we obtained a train of 11 µJ pulses with a duration of about 25 fs and a spectral extension from 950 nm to 1200 nm. The second system for spectral broadening that we developed is based on the exploitation of self-phase modulation in a hollow-core hypocycloidal fiber filled with a noble gas, in our case Argon. The setup is described in the second chapter and is constituted by such kind of fiber followed by a multipass cell. With a gas pressure of 10 atmospheres, we obtained 14 µJ pulses characterised by a duration of around 30 fs and a bandwidth extending from 950 nm to 1150 nm. We also developed a FROG setup for pulse reconstruction, based on a SHG configuration: we applied it to the laser system described in the first chapter for the measurement of pulses duration. The fourth chapter of this work describes the training of a classification model developed through machine learning in Matlab environment to be used to identify CARS spectra generated by simulants of chemical contaminants.File | Dimensione | Formato | |
---|---|---|---|
2019_10_Passarella.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
10.17 MB
Formato
Adobe PDF
|
10.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/149512