Infrastructure decay due to corrosion of embedded reinforcing steel stands out as a significant challenge worldwide. The maintenance cost of preventing steel reinforce-ment corrosion, and the huge cost of repair or replacement of concrete structures that deteriorated from the corrosion induced damage, have evoked great interest in finding alternative materials for reinforcing concrete structures. It is often argued that whether the steel reinforcement in such structures could be replaced by chemically inert rein-forcement such as fiber-reinforcing polymers so that the problem of corrosion could be solved. Glass Fiber-Reinforcing Polymer (GFRP) materials have come into sight as a practical alternative material to steel in concrete due to its high strength-weight ratio, high stiffness-to-weight ratio, and low cost-to-performance ratio. GFRP materials have not been used in large-scale civil engineering applications despite their numerous ad-vantages over traditional materials such as steel. Wide acceptance of glass fiber rein-forced polymer components in the construction industry requires comprehensive in-vestigation of their structural and mechanical behavior to ensure their suitability for the construction of reinforced concrete structures. The bond’s long term durability plays a critical role in the long term performance of concrete structures using internal GFRP bars allowing you to assess their durability. In the light of the considerations exposed, this work of Master’s thesis was carried out with the aim of investigating the durability of GFRPs used as internal reinforcement in reinforced concrete structures. This study does not claim to provide a final answer to the lack of knowledge of the professional about this constructive technology, but to provide an important and concrete contribution to fill these gaps. In order to study the durability of GFRPs, we carried out several experimental tests aimed at understanding the main mechanism that govern chemical corrosion processes. After a careful analy-sis of the scientific publications we identified six environments, different in terms of temperature and relative humidity values, able to replicate in a short period the deteri-orating conditions corresponding to several years of exposure of a reinforced concrete structure. These accelerated aging techniques have, therefore, enabled us to identify the main factors that can affect the durability of GFRP reinforcements. Two different types of cement have been used in this scientific research, in order to detect how the characteristics of the cement paste can influence the degradation mechanism of glass fiber reinforced polymers. A Portland cement plus slag, which represents the most common binder in the State of Florida (US) and a sulfoaluminate (CSA) cement that is the flagship of the latest technological innovations of the cement industry. Traditional testing methods, such as mass and electrical resistivity measurements and compressive strength tests were performed to mechanically characterize the materials used. After that, through the pullout testing methods, we obtain the bond stresses values related to the specimens. These data allowed us to develop a correlation between the results of the pullout tests and those related to the innovative test method we hypothesized, called punch tests. One of the main goals of our Master’s thesis work, in fact, is to provide a test method-ology that is easily applicable to specimens taken from existing structures, in order to be able to assess the residual performance of the GFRP reinforcements. It has been found that, nowadays, a testing method with the aforementioned capabilities and po-tential has not yet developed. Finally, the punch test was used to assess the residual performance, in terms of bond stresses, of specimens undergoing different conditions of accelerated aging. Combining this testing method with visual analysis and electron microscopy investigations techniques, using the Scan Electron Microscope (S.E.M.), we have obtained significant results regarding the durability of GFRP reinforcements in concrete.
Il decadimento delle infrastrutture in calcestruzzo armato dovuto alla corrosione dei rinforzi interni in acciaio si distingue come una sfida significativa a livello mond-iale. I costi per prevenire la corrosione dei rinforzi in acciaio, e le spese elevate che i gestori devono sostenere per la riparazione o sostituzione di strutture in calcestruzzo che si sono deteriorate a causa dei fenomeni corrosivi indotti, hanno suscitato un enorme interesse per trovare materiali alternativi da impiegare come rinforzo nelle strutture in calcestruzzo armato. Si è sempre pensato che sostituire le tradizionali ar-mature in acciaio con rinforzi chimicamente inerti come i polimeri fibro-rinforzati potesse essere la soluzione a questa problematica. I polimeri fibro-rinforzati con fibre di vetro (GFRP) sono apparsi da subito come una valida e concreta alternativa all’utilizzo dei rinforzi in acciaio grazie al loro elevato rapporto tra prestazioni meccaniche e peso e alle performance eccezionali che sono in grado di garantire rispetto al loro costo. Nonostante i vantaggi che sono in grado di fornire, i GFRP non sono ancora impiegati in larga scala nel settore dell’ingegneria civile, La non perfetta conoscenza del loro comportamento a lungo termine, special-mente per quanto concerne la determinazione delle prestazioni residue, non permette agli ingegneri civili di utilizzare questa tecnologia costruttiva in maniera consapevole. L’adesione tra rinforzo e calcestruzzo rappresenta uno dei principali parametri che permette di monitorare il degrado dei polimeri fibro-rinforzati con fibre di vetro. Alla luce delle problematiche appena esposte, si è svolto questo lavoro di Tesi di Lau-rea Magistrale con l’obbiettivo di investigare la durabilità dei GFRP impiegati come rinforzo interno nelle strutture in calcestruzzo armato. Questo studio non ha la pretesa di fornire una risposta definitiva alla mancanza di conoscenza che caratterizza oggi-giorno questa tecnologia costruttiva, ma di fornire un importante e concreto contributo al fine di colmare le suddette lacune. Per poter studiare la durabilità dei GFRP abbi-amo svolto diversi test sperimentali volti ad investigare i principali meccanismi che intervengono nei processi chimici di corrosione. Dopo un’attenta analisi delle pubbli-cazioni scientifiche abbiamo individuato sei ambienti, diversi per caratteristiche di temperatura ed umidità relativa, in grado di replicare le condizioni di degrado cor-rispondenti a diversi anni di esposizione delle strutture in calcestruzzo armato in peri-odi di tempo molto più contenuti. Queste tecniche di invecchiamento accelerato ci hanno permesso, dunque, di individuare i principali fattori in grado di affliggere la du-rabilità dei GFRP. Due diverse tipologie di cemento sono state usate in questa ricerca scientifica, al fine di individuare come le caratterisitche dell’impasto cementizio, dove vengono impiegati questi rinforzi, possano influenzarne il degrado. Un cemento Port-land con aggiunta di slag, che rappresenta il legante maggiormente impiegato nello Stato della Florida (US) e un cemento solfoalluminoso che è frutto delle ultime inno-vazioni tecnologiche dell’industria del cemento. Metodi di prova tradizionali, quali misure di massa, resistività elettrica e test di resistenza a compressione sono stati svolti per caratterizzare da un punto di vista meccanico i materiali utilizzati. Dopodi-ché, attraverso la metodologia di prova del pullout test, abbiamo ottenuto i valori di sforzo di adesione agenti sui provini che ci hanno permesso di sviluppare una correla-zione tra la suddetta prova e un innovativo metodo di prova da noi ipotizzato, denomi-nato punch test. Uno dei principali obbiettivi del nostro lavoro di Tesi Magistrale, infatti, è quello di fornire una metodologia di prova che sia facilmente applicabile a provini prelevati da strutture realmente esistenti, per poterne valutare le prestazioni di adesione residue. Si è riscontrato, infatti, che oggigiorno non è ancora stato sviluppato un metodo di prova con le suddette capacità e potenzialità. Infine, il punch test, è stato impiegato per valutare le prestazioni residue, in termini di sforzo di adesione, dei provini sottoposti a diverse condizioni di invecchiamento accelerato. Combinando tale metodo di prova con tecniche di indagini di analisi visiva e di microscopia elettronica, avvalendoci del microscopio elettronico a scansione (S.E.M.), abbiamo ottenuto importanti risultati ri-guardo la durabilità dei GFRP impiegati come rinforzi interni nelle strutture in cal-cestruzzo armato.
Experimental tests on durability of GFRP reinforcements in concrete
GALLI, MATTEO;MANTEGAZZA, TOMMASO ANDREA
2018/2019
Abstract
Infrastructure decay due to corrosion of embedded reinforcing steel stands out as a significant challenge worldwide. The maintenance cost of preventing steel reinforce-ment corrosion, and the huge cost of repair or replacement of concrete structures that deteriorated from the corrosion induced damage, have evoked great interest in finding alternative materials for reinforcing concrete structures. It is often argued that whether the steel reinforcement in such structures could be replaced by chemically inert rein-forcement such as fiber-reinforcing polymers so that the problem of corrosion could be solved. Glass Fiber-Reinforcing Polymer (GFRP) materials have come into sight as a practical alternative material to steel in concrete due to its high strength-weight ratio, high stiffness-to-weight ratio, and low cost-to-performance ratio. GFRP materials have not been used in large-scale civil engineering applications despite their numerous ad-vantages over traditional materials such as steel. Wide acceptance of glass fiber rein-forced polymer components in the construction industry requires comprehensive in-vestigation of their structural and mechanical behavior to ensure their suitability for the construction of reinforced concrete structures. The bond’s long term durability plays a critical role in the long term performance of concrete structures using internal GFRP bars allowing you to assess their durability. In the light of the considerations exposed, this work of Master’s thesis was carried out with the aim of investigating the durability of GFRPs used as internal reinforcement in reinforced concrete structures. This study does not claim to provide a final answer to the lack of knowledge of the professional about this constructive technology, but to provide an important and concrete contribution to fill these gaps. In order to study the durability of GFRPs, we carried out several experimental tests aimed at understanding the main mechanism that govern chemical corrosion processes. After a careful analy-sis of the scientific publications we identified six environments, different in terms of temperature and relative humidity values, able to replicate in a short period the deteri-orating conditions corresponding to several years of exposure of a reinforced concrete structure. These accelerated aging techniques have, therefore, enabled us to identify the main factors that can affect the durability of GFRP reinforcements. Two different types of cement have been used in this scientific research, in order to detect how the characteristics of the cement paste can influence the degradation mechanism of glass fiber reinforced polymers. A Portland cement plus slag, which represents the most common binder in the State of Florida (US) and a sulfoaluminate (CSA) cement that is the flagship of the latest technological innovations of the cement industry. Traditional testing methods, such as mass and electrical resistivity measurements and compressive strength tests were performed to mechanically characterize the materials used. After that, through the pullout testing methods, we obtain the bond stresses values related to the specimens. These data allowed us to develop a correlation between the results of the pullout tests and those related to the innovative test method we hypothesized, called punch tests. One of the main goals of our Master’s thesis work, in fact, is to provide a test method-ology that is easily applicable to specimens taken from existing structures, in order to be able to assess the residual performance of the GFRP reinforcements. It has been found that, nowadays, a testing method with the aforementioned capabilities and po-tential has not yet developed. Finally, the punch test was used to assess the residual performance, in terms of bond stresses, of specimens undergoing different conditions of accelerated aging. Combining this testing method with visual analysis and electron microscopy investigations techniques, using the Scan Electron Microscope (S.E.M.), we have obtained significant results regarding the durability of GFRP reinforcements in concrete.File | Dimensione | Formato | |
---|---|---|---|
GALLI MANTEGAZZA MASTER'S THESIS.pdf
non accessibile
Descrizione: Master's Thesis
Dimensione
11.92 MB
Formato
Adobe PDF
|
11.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/149535