Attosecond is the domain of electron dynamics, processes like charge migration in molecules happen within a duration of few hundreds of attoseconds (1e−18 s), from which the necessity to develop new experimental techniques and instruments to temporally resolve those dynamics. The branch of physics that studies these processes is called Attosecond Science. The ultrafast dynamics are investigated using techniques such as the pump probe, where the system is perturbed by a first pulse and measured with a second one. The time resolution is achieved using extreme short coherent light in the eXtreme UltraViolet (XUV) region, which are generated using the High order Harmonics Generation (HHG) technique. The fundamental physical mechanisms at basis of light-matter interaction, like the photoemission process, are studied through the measurement of photoemission delays. Furthermore, the Attosecond Science seeks to understand and resolves real life problems, one of the most important development is in the analysis of biological processes such as the photodamage of amino acids and the trigger of protection process in proteins. To reach those ambitious goals, it is indispensable to understand the fundamental physical phenomena which develop in a very short time scale after light matter interaction. In this framework, this thesis aims to investigate experimentally the angular dependence of the photoionization delay of Argon using the Reconstruction of Attosecond Beating By Interference of Two-photon Transitions (RABBITT) technique and, at same time, to indentify the limits of this technique with the intensity of the probe pulse. The angular dependence is measured using a spectrometer with angular resolution, a Velocity Map Imaging (VMI) spectrometer. The experimental results confirm the theoretical behavior, in addition, they also underline the limits of RABBITT with increasing intensity.
La scienza degli Attosecondi studia le dinamiche puramente elettroniche, processi come il trasferimento di carica nelle molecole avvengono in una durata di qualche centinaia di attosecondi (1e−18 s), da cui la necessità di sviluppare nuove tecniche e strumentazioni per la risoluzione temporale di questi fenomeni. Le dinamiche vengono indagate usando tecniche come la misura di pompa e sonda, dove il sistema viene perturbato da un primo impulso ottico e misurato con un secondo. La risoluzione temporale è raggiunta usando impulsi di luce coerente ultracorti nella banda dell’ultravioletto, che vengono generati attraverso la tecnica della generazione di alte armoniche. Questi impulsi permettono, ad esempio, lo studio dei ritardi nei processi di fotoemissione dai diversi orbitali atomici per comprendere i vari processi di interazione luce-materia. La scienza degli Attosecondi mira anche ad approfondire e risolvere i problemi più attuali. Uno dei suoi sviluppi più importanti è nell’analisi dei processi biologici come fenomeni di fotodanneggiamento degli amminoacidi e dei processi di protezione di queste proteine. Per raggiungere questi obbiettivi ambiziosi, è però necessario comprendere i fenomeni fisici fondamentali che si sviluppano in tempi molto brevi dopo l’interazione luce-materia. Lo scopo della tesi è pertanto l’analisi sperimentale della dipendenza angolare del ritardo della fotoionizzazione dell’Argon usando la tecnica Reconstruction of Attosecond Beating By Interference of Two-photon Transitions (RABBITT) e al contempo indentificare i limiti della tecnica rispetto all’intensità del fascio utilizzato. La dipendenza angolare è stata misurata usando un spettrometro a risoluzione angolare, Velocity Map Imaging (VMI) spectrometer. Le misure sperimentali confermano l’andamento teorico della dipendenza angolare, inoltre evidenzia il limite della tecnica RABBITT all’aumentare dell’intensità del fascio di sonda.
Strong-field effects in atomic photoemission delays
WU, YINGXUAN
2018/2019
Abstract
Attosecond is the domain of electron dynamics, processes like charge migration in molecules happen within a duration of few hundreds of attoseconds (1e−18 s), from which the necessity to develop new experimental techniques and instruments to temporally resolve those dynamics. The branch of physics that studies these processes is called Attosecond Science. The ultrafast dynamics are investigated using techniques such as the pump probe, where the system is perturbed by a first pulse and measured with a second one. The time resolution is achieved using extreme short coherent light in the eXtreme UltraViolet (XUV) region, which are generated using the High order Harmonics Generation (HHG) technique. The fundamental physical mechanisms at basis of light-matter interaction, like the photoemission process, are studied through the measurement of photoemission delays. Furthermore, the Attosecond Science seeks to understand and resolves real life problems, one of the most important development is in the analysis of biological processes such as the photodamage of amino acids and the trigger of protection process in proteins. To reach those ambitious goals, it is indispensable to understand the fundamental physical phenomena which develop in a very short time scale after light matter interaction. In this framework, this thesis aims to investigate experimentally the angular dependence of the photoionization delay of Argon using the Reconstruction of Attosecond Beating By Interference of Two-photon Transitions (RABBITT) technique and, at same time, to indentify the limits of this technique with the intensity of the probe pulse. The angular dependence is measured using a spectrometer with angular resolution, a Velocity Map Imaging (VMI) spectrometer. The experimental results confirm the theoretical behavior, in addition, they also underline the limits of RABBITT with increasing intensity.File | Dimensione | Formato | |
---|---|---|---|
thesis_WU.pdf
solo utenti autorizzati dal 17/09/2020
Dimensione
8.94 MB
Formato
Adobe PDF
|
8.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/149543