The application of a thermal gradient to a colloidal suspension induces a drift motion of the particles, with the direction that is ultimately determined by the nature of the particle/solvent interface. This phenomenon, called thermophoresis, is applied for the study on the liquid phases of other materials falling into the class of Soft Matter, which are polymer solutions and surfactants. The great variety of substances identified as soft materials, ranging from mundane soaps to complex organic substances, justifies the efforts for a better understanding of this ’mesoscopic realm’. This is the framework under which this Thesis work is established. Specifically, we employed the Thermal Lensing (TL) technique, which induces thermophoretic particle motions in liquid samples via a laser beam. The resulting concentration gradient acts as a sort of lens-like effect, with a beam-spreading or focusing that is easily measured by a TL setup. The real novelty featured in this Thesis consists in the phases that the investigated materials could form, since their components tend to self-organise into solid-like structures. That is, we applied an optothermal manipulation to three soft solids: a colloidal crystal, a system of globular micelles arranged in a crystalline structure, and a physical gel with biomedical applications. The resulting TL analysis showed that these soft solids respond to a thermal gradient with a well-discernible lens-like effect, that is furthermore similar to the thermodiffusive signal given by their respective liquid phases. This result implies the occurrence of some thermophoretic motions in supposedly arrested phases. The use of a new TL technique also showed no hysteresis in the dynamical return of the soft solids after the removal of the ’thermal forcing’, akin to elastic solids as a shear stress is removed. While further studies are required to endorse our deductions, we proved the TL technique to be a viable way to analyse the thermally-induced deformations in soft solids.
L’applicazione di un gradiente termico ad una sospensione colloidale causa un moto di deriva delle particelle, la cui direzione è determinata essenzialmente dalla natura dell’interfaccia particella-solvente. Tale fenomeno, chiamato termoforesi, è applicato nello studio delle fasi liquide di altri materiali compresi nella classe della Materia Soffice, ovvero soluzioni polimeriche e tensioattivi. La grande varietà di sostanze identificate come materiali soffici, che spaziano dai comuni detergenti a complesse sostanze organiche, giustifica lo sforzo atto ad una migliore comprensione di questo ’mondo mesoscopico’. Questo è lo scenario in cui ha luogo tale lavoro di Tesi. Nello specifico, abbiamo utilizzato la tecnica della lente termica (TL), che induce moti termoforetici delle particelle in campioni liquidi per mezzo di un fascio laser. Il gradiente di concentrazione risultante agisce come una sorta di effetto lente, causando un allargamento o focalizzazione del fascio facilmente misurabile da un apparato TL. La novità apportata da questa Tesi consiste nelle fasi che i materiali analizzati possono andare a formare, poiché i loro componenti tendono ad auto-organizzarsi in strutture dalle caratteristiche solide. Ovvero, abbiamo attuato una manipolazione opto-termica su tre solidi soffici: un cristallo colloidale, un sistema di micelle globulari disposte in un reticolo cristallino, ed un gel fisico dalle applicazioni biomediche. L’analisi TL che ne risulta mostra come tali solidi soffici reagiscano ad un gradiente termico dando un effetto lente ben distinto, per di più simile al segnale termodiffusivo ottenibile dalle rispettive fasi liquide. Tale risultato suggerisce la presenza di un qualche tipo di moto termoforetico in fasi ritenute arrestate. L’utilizzo di una nuova tecnica TL ha inoltre evidenziato l’assenza di isteresi nel ritorno dinamico dei solidi soffici dopo la rimozione della ’forzante termica’, analogamente a solidi elastici a cui viene rimosso lo sforzo meccanico. Nonostante siano necessari ulteriori studi a supporto delle nostre deduzioni, la tecnica TL si è dimostrata essere una via percorribile nell’analisi di deformazioni indotte da laser sui solidi soffici.
Optothermal manipulation of soft solids
ALESSANDRINI, ANDREA
2018/2019
Abstract
The application of a thermal gradient to a colloidal suspension induces a drift motion of the particles, with the direction that is ultimately determined by the nature of the particle/solvent interface. This phenomenon, called thermophoresis, is applied for the study on the liquid phases of other materials falling into the class of Soft Matter, which are polymer solutions and surfactants. The great variety of substances identified as soft materials, ranging from mundane soaps to complex organic substances, justifies the efforts for a better understanding of this ’mesoscopic realm’. This is the framework under which this Thesis work is established. Specifically, we employed the Thermal Lensing (TL) technique, which induces thermophoretic particle motions in liquid samples via a laser beam. The resulting concentration gradient acts as a sort of lens-like effect, with a beam-spreading or focusing that is easily measured by a TL setup. The real novelty featured in this Thesis consists in the phases that the investigated materials could form, since their components tend to self-organise into solid-like structures. That is, we applied an optothermal manipulation to three soft solids: a colloidal crystal, a system of globular micelles arranged in a crystalline structure, and a physical gel with biomedical applications. The resulting TL analysis showed that these soft solids respond to a thermal gradient with a well-discernible lens-like effect, that is furthermore similar to the thermodiffusive signal given by their respective liquid phases. This result implies the occurrence of some thermophoretic motions in supposedly arrested phases. The use of a new TL technique also showed no hysteresis in the dynamical return of the soft solids after the removal of the ’thermal forcing’, akin to elastic solids as a shear stress is removed. While further studies are required to endorse our deductions, we proved the TL technique to be a viable way to analyse the thermally-induced deformations in soft solids.File | Dimensione | Formato | |
---|---|---|---|
2019_10_Alessandrini.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
12.11 MB
Formato
Adobe PDF
|
12.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/149552