Interferometry is a powerful mean to estimate the transverse size of a light source. In principle, it can provide a measurement which is non-invasive, absolute and less affected by diffraction compared to conventional imaging techniques. The Van Cittert and Zernike (VCZ) theorem is the theoretical result that lies at the basis of this technique. This theorem, demonstrated for thermal sources, can be extended to other non-conventional light sources. When applied to synchrotron radiation emitted by charged particles in accelerators, it may become an interesting diagnostic tool for the beam. Although the technique is consolidated in electron machines, only few hadron accelerators would manage to exploit it, due to the high energy required. Owing to its exceptional characteristics, the Large Hadron Collider at CERN can achieve a sufficient synchrotron radiation emission in the visible range to test the interferometry applicability. Previous preliminary studies have demonstrated the validity of the theorem for the case of interest. The aim of this thesis work is to deepen the study with simulations, extending the range of cases considered, and to validate experimentally the results. While simulations provide results fully consistent with theory, the experimental campaign shows a relevant discrepancy regarding the spatial dependence of the assessed size, which precludes an absolute measurement. Further laboratory tests demonstrate that this phenomenon cannot be due to defects in the experimental setup so that the responsible must be the SR source itself. Some hypotheses are discussed along with the performances of the technique in term of relative measurements.
L’interferometria costituisce un potente mezzo per stimare la taglia trasversale di sorgenti luminose in quanto, in principio, fornisce una misura non invasiva, assoluta e meno affetta da diffrazione rispetto alle tecniche convenzionali di imag- ing. Il fondamento teorico di questa tecnica è dato dal teorema di Van Cittert e Zernike (VCZ) che, formulato per sorgenti termiche, può essere esteso anche a sorgenti più esotiche. Applicato alla luce di sincrotrone (SR) emessa da fasci di particelle in acceleratori, può costituirne uno strumento di diagnostica. Sebbene questa applicazione sia ad oggi consolidata nelle macchine a elettroni, pochi acceleratori di adroni riescono a raggiungere un’emissione di luce utile allo scopo. In virtù delle sue caratteristiche eccezionali, nel Large Hadron Collider (LHC) del CERN è possibile investigare l’applicabilità di questa tecnica. Studi precedenti ne hanno dimostrato, con simulazioni e misure preliminari, la fattibilità. L’obiettivo di questa tesi è consolidare l’impianto di simulazioni, estendendone le casistiche contemplate ed eseguire misure sistematiche per verificarne la validità sperimentale. In questo contesto, mentre dalle simulazioni emergono risultati pienamente consistenti con la teoria, le misure sperimentali si discostano sensibilmente per quanto concerne la dipendenza spaziale della taglia misurata che rende quindi impossibile, al momento, una misura assoluta. Tramite confronto con misure in laboratorio, si escludono difetti dell’apparato sperimentale all’origine di questo fenomeno che deve quindi necessariamente provenire da proprietà fisiche della sorgente di SR. Sono quindi illustrate le possibili ipotesi e vengono discusse le prestazioni di questo strumento nel fornire una misura relativa di taglia del fascio.
Synchrotron radiation interferometry for beam size measurement in the large hadron collider
BUTTI, DANIELE
2018/2019
Abstract
Interferometry is a powerful mean to estimate the transverse size of a light source. In principle, it can provide a measurement which is non-invasive, absolute and less affected by diffraction compared to conventional imaging techniques. The Van Cittert and Zernike (VCZ) theorem is the theoretical result that lies at the basis of this technique. This theorem, demonstrated for thermal sources, can be extended to other non-conventional light sources. When applied to synchrotron radiation emitted by charged particles in accelerators, it may become an interesting diagnostic tool for the beam. Although the technique is consolidated in electron machines, only few hadron accelerators would manage to exploit it, due to the high energy required. Owing to its exceptional characteristics, the Large Hadron Collider at CERN can achieve a sufficient synchrotron radiation emission in the visible range to test the interferometry applicability. Previous preliminary studies have demonstrated the validity of the theorem for the case of interest. The aim of this thesis work is to deepen the study with simulations, extending the range of cases considered, and to validate experimentally the results. While simulations provide results fully consistent with theory, the experimental campaign shows a relevant discrepancy regarding the spatial dependence of the assessed size, which precludes an absolute measurement. Further laboratory tests demonstrate that this phenomenon cannot be due to defects in the experimental setup so that the responsible must be the SR source itself. Some hypotheses are discussed along with the performances of the technique in term of relative measurements.File | Dimensione | Formato | |
---|---|---|---|
2019_10_Butti.pdf
accessibile in internet per tutti
Descrizione: Thesis text
Dimensione
17.3 MB
Formato
Adobe PDF
|
17.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/149553