In an always more globalized world, with an always more significant economy driven by international students, universities, policymakers, and job recruiters need to have a more in-depth and a more unobstructed view on the characteristics by which their university’s performance are affected, trying later to give them the proper support. From the literature, a discrepancy in the performance between international and domestic students is highlighted. To further explore this, in this project a multi-dimensional model will be designed. It will be tested on the students who belonged to a Master of Science in a Technical University in Italy thanks to two machine learning algorithms. The aim of this thesis is giving a contribution to the still unexplored field of learning analytics for international students.

In un mondo sempre più globalizzato, con una crescita dell’economia verso il mercato degli studenti internazionali, le università, i policy makers, le agenzie di reclutamento per il lavoro hanno bisogno di avere una visione più precisa delle caratteristiche che condizionano le performance degli studenti internazionali nelle università, provando a dare loro il supporto necessario. Da un punto di vista letterario, il gap tra le performance degli studenti internazionali e quelli che invece risiedono nella nazione dell’università è evidente. Con l’obiettivo di investigare questo punto, un modello multi-dimensionale sarà sviluppato. Sarà in seguito testato sugli studenti iscritti ad una laurea magistrale in una università tecnica italiana attraverso l’utilizzo di due algoritmi di machine learning. L’obiettivo di questa tesi è quello di cercare di dare un contributo nell’ancora poco esplorato ambito di learning analytics per gli studenti internazionali.

How can learning analytics improve educational outcomes ? Results from an innovative project

MURA, MARGHERITA
2018/2019

Abstract

In an always more globalized world, with an always more significant economy driven by international students, universities, policymakers, and job recruiters need to have a more in-depth and a more unobstructed view on the characteristics by which their university’s performance are affected, trying later to give them the proper support. From the literature, a discrepancy in the performance between international and domestic students is highlighted. To further explore this, in this project a multi-dimensional model will be designed. It will be tested on the students who belonged to a Master of Science in a Technical University in Italy thanks to two machine learning algorithms. The aim of this thesis is giving a contribution to the still unexplored field of learning analytics for international students.
ING - Scuola di Ingegneria Industriale e dell'Informazione
3-ott-2019
2018/2019
In un mondo sempre più globalizzato, con una crescita dell’economia verso il mercato degli studenti internazionali, le università, i policy makers, le agenzie di reclutamento per il lavoro hanno bisogno di avere una visione più precisa delle caratteristiche che condizionano le performance degli studenti internazionali nelle università, provando a dare loro il supporto necessario. Da un punto di vista letterario, il gap tra le performance degli studenti internazionali e quelli che invece risiedono nella nazione dell’università è evidente. Con l’obiettivo di investigare questo punto, un modello multi-dimensionale sarà sviluppato. Sarà in seguito testato sugli studenti iscritti ad una laurea magistrale in una università tecnica italiana attraverso l’utilizzo di due algoritmi di machine learning. L’obiettivo di questa tesi è quello di cercare di dare un contributo nell’ancora poco esplorato ambito di learning analytics per gli studenti internazionali.
Tesi di laurea Magistrale
File allegati
File Dimensione Formato  
tesi.pdf

accessibile in internet per tutti

Descrizione: “How can learning analytics improve educational outcomes? Results from an innovative project.”
Dimensione 4.3 MB
Formato Adobe PDF
4.3 MB Adobe PDF Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/149648