This thesis describes the development of a new and innovative actuator technology for integrated microsystems: piezoelectric ultrasonic micromotors. Ultrasonic motors offer the advantages of low speed and high torque operation without the need of gear trains. Small cm-scale devices are characterized by an angular velocity in the order of 100 rotations per minute and a torque higher than 10^3 μNm. They can be compact and lightweight and they can operate also in the absence of applied loads due to the traveling wave frictional coupling mechanism between the rotor and the stator. Whereas ultrasonic motors would typically be made of bulk piezoelectric ceramic, this thesis describes the implementation of a concept design that uses a thin film piezoelectric material that undergoes a sol-gel deposition directly onto silicon to create high-torque motors compatible with wafer integration technologies. Due to large dielectric constants and increased breakdown strengths of thin film, ultrasonic micromotors show meaningful improvements in energy density over electrostatic micromotors. An integrated approach to the fabrication of thin-film piezoelectric traveling wave ultrasonic motors at the mm-scale is proposed, with significant improvements with respect to previous works. The comb-tooth structure that enhance the motor torque is fabricated with a particular back and front etch lithographic process and the electrodes design besides providing the electrical signal works as central anchor for the stator thanks to low temperature soldering. Assemblage solutions are proposed according to the current available technologies, such as pick-and-place microassembly and transfer printing. Furthermore, finite element simulations using COMSOL Multiphysics are carried out to evaluate the stator resonant behavior and the motor performance, in terms of angular velocity, torque and output power. Although promising results are obtained, 10^4 rpm, few μNm and mW are reported, inconsistent steady state angular velocity is observed. Eventually, a possible application in the field of micro opto-electro-mechanical system is proposed as the micromotor would potentially improve 3D sensing microsystems by allowing 360° motion.
Oggetto della tesi è lo sviluppo di una nuova ed innovativa tipologia di attuatori per microsistemi: i micromotori piezoelettrici ultrasonici. I motori ad ultrasuoni offrono il grande vantaggio di poter lavorare a bassa velocità, ma a coppia elevata senza la necessità di ingranaggi per la trasmissione del moto. Dispositivi grandi pochi centimetri sono caratterizzati da velocità angolari nell’ordine di 100 giri al minuto e da una coppia superiore a 10^3 μNm. Possono essere compatti e leggeri e lavorare anche in assenza di precarichi che mantengano a contatto rotore e statore grazie al meccanismo di attrito generato dall’onda viaggiante. Mentre i motori ad ultrasuoni sono generalmente realizzati con materiali piezoelettrici in forma bulk, si riporta l’implementazione di un concept che utilizza un film sottile di materiale piezoelettrico deposto mediante tecnica sol-gel direttamente sul silicio per creare motori ad elevata coppia la cui produzione è compatibile con tecnologie di integrazione su wafer. Grazie all’elevata costante dielettrica e rigidità dielettrica del film sottile, questi micromotori a ultrasuoni mostrano un incremento significativo della densità di energia rispetto ai micromotori elettrostatici. Viene proposto un sistema di fabbricazione con miglioramenti significativi rispetto a pubblicazioni precedenti. La struttura a pettine dello statore che incrementa la coppia del motore è fabbricata con un particolare processo litografico di attacco chimico su entrambe le facce del wafer di silicio. Inoltre, il design degli elettrodi, oltre a permettere le connessioni elettriche, funge da ancoraggio centrale per lo statore grazie ad una saldatura a bassa temperatura. Soluzioni di assemblaggio sono proposte in base alle attuali tecnologie disponibili, quali microassemblaggio mediante pick-and-place robot o transfer printing. Si riportano risultati ottenuti mediante simulazioni agli elementi finiti utilizzando COMSOL Multiphysics per valutare il comportamento dello statore in risonanza e le prestazioni del motore, in termini di velocità angolare, coppia e potenza utile. Sebbene i risultati promettenti, 10^4 giri minuto, alcuni μNm e mW, si osserva una velocità angolare a regime instabile. Viene proposta infine una possibile applicazione nel campo dei sistemi micro optoelettromeccanici in quanto il micromotore potrebbe potenzialmente rivoluzionare i microsistemi di rilevamento 3D consentendo un movimento a 360°.
Design and modeling of a piezoelectric ultrasonic micromotor
CASIRAGHI, GIORGIO
2018/2019
Abstract
This thesis describes the development of a new and innovative actuator technology for integrated microsystems: piezoelectric ultrasonic micromotors. Ultrasonic motors offer the advantages of low speed and high torque operation without the need of gear trains. Small cm-scale devices are characterized by an angular velocity in the order of 100 rotations per minute and a torque higher than 10^3 μNm. They can be compact and lightweight and they can operate also in the absence of applied loads due to the traveling wave frictional coupling mechanism between the rotor and the stator. Whereas ultrasonic motors would typically be made of bulk piezoelectric ceramic, this thesis describes the implementation of a concept design that uses a thin film piezoelectric material that undergoes a sol-gel deposition directly onto silicon to create high-torque motors compatible with wafer integration technologies. Due to large dielectric constants and increased breakdown strengths of thin film, ultrasonic micromotors show meaningful improvements in energy density over electrostatic micromotors. An integrated approach to the fabrication of thin-film piezoelectric traveling wave ultrasonic motors at the mm-scale is proposed, with significant improvements with respect to previous works. The comb-tooth structure that enhance the motor torque is fabricated with a particular back and front etch lithographic process and the electrodes design besides providing the electrical signal works as central anchor for the stator thanks to low temperature soldering. Assemblage solutions are proposed according to the current available technologies, such as pick-and-place microassembly and transfer printing. Furthermore, finite element simulations using COMSOL Multiphysics are carried out to evaluate the stator resonant behavior and the motor performance, in terms of angular velocity, torque and output power. Although promising results are obtained, 10^4 rpm, few μNm and mW are reported, inconsistent steady state angular velocity is observed. Eventually, a possible application in the field of micro opto-electro-mechanical system is proposed as the micromotor would potentially improve 3D sensing microsystems by allowing 360° motion.File | Dimensione | Formato | |
---|---|---|---|
2019_10_Casiraghi.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
25.48 MB
Formato
Adobe PDF
|
25.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/150013