Innovative sulfonated graphene oxide (SGO) membranes have been prepared and evaluated for their possible application in proton exchange membrane fuel cells (PEMFCs) as a viable alternative to Nafion, which is the current state-of-the-art ionomer. Among the possible approaches that have investigated several polymers, graphene oxide (GO) has gained a significant attention for the production of both freestanding membranes and hybrid composites. GO is indeed an ideal candidate, owing to its self-assembling and mechanical properties along with the presence of oxygen-containing hydrophilic functional groups that are likely to improve water retention, fostering proton conduction. However, GO needs to be functionalized with different acid groups tightly bound to its layers, in order to display a satisfying conductivity. In this work, an effective method is presented for the introduction on GO’s backbone of sulfonic acid groups analogous to those of Nafion. Different samples have been produced by reacting a commercial aqueous dispersion of GO with different amounts of sulfuric acid, studying the effect of the variation of the volume of acid on the structure and the degree of functionalization of the membranes. Thus, an optimal acid-to-GO molar ratio has been identified, taking into account an empirical formula of GO derived, as a first approximation, from the elemental analysis of the starting dispersion. Such formula has then been confirmed by the results of EDX analyses. Uniform and self-assembled SGO membranes have been obtained and thoroughly characterized by ATR-FTIR, XRD, SEM and EDX spectroscopies, thermogravimetric studies, optical microscopy and static contact angle measurements. These tests confirmed the effective functionalization of GO and the stability of sulfonic acid groups even after water uptake experiments, which have been carried out at different temperatures and humidification conditions. Sulfonated samples showed an improved water retention compared to both Nafion and pristine GO membranes, especially at low temperature and humidity. The ion exchange capacity of the different specimens has been evaluated as well: values above 1 meq/g have been measured and proved even higher than those reported in literature for Nafion. Consequently, a correlation among acid-to-GO molar ratio, water uptake, ion exchange capacity and degree of sulfonation can be established. Finally, a preliminary test in a lab-scale hydrogen-fed fuel cell has been performed on a selected sample, resulting in a promising mechanical resistance, even though a low open circuit voltage (0.63 V) has been detected. Nonetheless, the findings of this thesis confirmed that freestanding SGO membranes are a potential candidate for the replacement of Nafion in PEMFC systems.
Questo lavoro di tesi ha riguardato la preparazione di membrane innovative a base di grafene ossido solfonato (SGO) e la loro valutazione per la possibile applicazione in celle a combustibile a scambio protonico (PEMFCs) come alternativa al Nafion, che è ad ora lo ionomero più utilizzato. Tra le possibili soluzioni che coinvolgono diversi polimeri, il grafene ossido (GO) ha attirato notevoli attenzioni per la produzione sia di membrane self-standing sia di compositi. Il GO appare come un candidato ideale, grazie alle sue proprietà meccaniche e autoassemblanti, in aggiunta alla presenza di gruppi idrofilici contenenti ossigeno che sono in grado di migliorare l’assorbimento d’acqua e di facilitare la conduzione di protoni. Tuttavia, è necessario introdurre dei gruppi funzionali acidi sui piani del GO per ottenere una conducibilità sufficiente. In questa tesi viene presentato un metodo efficace per la modifica della struttura del GO con gruppi solfonici analoghi a quelli presenti nel Nafion. I campioni sono stati prodotti facendo reagire una dispersione acquosa di GO con diversi quantitativi di acido solforico, e studiando l’effetto della variazione del volume di acido su struttura e grado di funzionalizzazione delle membrane. Questo ha permesso di identificare un rapporto ottimale tra acido e GO, tenendo conto di una formula empirica derivata, in prima approssimazione, dall’analisi elementale della dispersione di partenza. Tale formula è stata poi confermata dai risultati dell’analisi EDX. Le membrane uniformi di SGO così ottenute sono state caratterizzate accuratamente con spettroscopie infrarossa ed EDX, diffrazione a raggi X, microscopia ottica ed elettronica, misure termogravimetriche e dell’angolo di contatto statico. Questi test hanno confermato l’effettiva funzionalizzazione del GO e la stabilità dei gruppi solfonici anche in seguito a test di assorbimento d’acqua, effettuati a diverse temperature e livelli di umidificazione. I campioni solfonati hanno mostrato un aumento della ritenzione di acqua rispetto a membrane di Nafion e GO vergine, specialmente a bassa temperatura e umidità. Inoltre, è stata misurata la capacità di scambio ionico dei diversi esemplari e, con valori maggiori di 1 meq/g, si è dimostrata più elevata di quella riportata in letteratura per il Nafion. Di conseguenza, si può stabilire una correlazione tra rapporto acido/GO, assorbimento d’acqua, capacità di scambio ionico e grado di solfonazione. Infine, un test preliminare è stato effettuato su un campione selezionato in una cella a combustibile alimentata a idrogeno, risultando in una resistenza meccanica promettente ma anche in una bassa tensione a circuito aperto (0.63 V). Nondimeno, i risultati di questa tesi confermano la potenzialità delle membrane di SGO come possibili sostituti del Nafion per l’uso in celle PEM.
Development of self-assembling sulfonated graphene oxide membranes as novel proton conductors for PEM fuel cells
BASSO PERESSUT, ANDREA STEFANO
2018/2019
Abstract
Innovative sulfonated graphene oxide (SGO) membranes have been prepared and evaluated for their possible application in proton exchange membrane fuel cells (PEMFCs) as a viable alternative to Nafion, which is the current state-of-the-art ionomer. Among the possible approaches that have investigated several polymers, graphene oxide (GO) has gained a significant attention for the production of both freestanding membranes and hybrid composites. GO is indeed an ideal candidate, owing to its self-assembling and mechanical properties along with the presence of oxygen-containing hydrophilic functional groups that are likely to improve water retention, fostering proton conduction. However, GO needs to be functionalized with different acid groups tightly bound to its layers, in order to display a satisfying conductivity. In this work, an effective method is presented for the introduction on GO’s backbone of sulfonic acid groups analogous to those of Nafion. Different samples have been produced by reacting a commercial aqueous dispersion of GO with different amounts of sulfuric acid, studying the effect of the variation of the volume of acid on the structure and the degree of functionalization of the membranes. Thus, an optimal acid-to-GO molar ratio has been identified, taking into account an empirical formula of GO derived, as a first approximation, from the elemental analysis of the starting dispersion. Such formula has then been confirmed by the results of EDX analyses. Uniform and self-assembled SGO membranes have been obtained and thoroughly characterized by ATR-FTIR, XRD, SEM and EDX spectroscopies, thermogravimetric studies, optical microscopy and static contact angle measurements. These tests confirmed the effective functionalization of GO and the stability of sulfonic acid groups even after water uptake experiments, which have been carried out at different temperatures and humidification conditions. Sulfonated samples showed an improved water retention compared to both Nafion and pristine GO membranes, especially at low temperature and humidity. The ion exchange capacity of the different specimens has been evaluated as well: values above 1 meq/g have been measured and proved even higher than those reported in literature for Nafion. Consequently, a correlation among acid-to-GO molar ratio, water uptake, ion exchange capacity and degree of sulfonation can be established. Finally, a preliminary test in a lab-scale hydrogen-fed fuel cell has been performed on a selected sample, resulting in a promising mechanical resistance, even though a low open circuit voltage (0.63 V) has been detected. Nonetheless, the findings of this thesis confirmed that freestanding SGO membranes are a potential candidate for the replacement of Nafion in PEMFC systems.File | Dimensione | Formato | |
---|---|---|---|
2019_10_Basso Peressut.pdf
solo utenti autorizzati dal 17/09/2022
Descrizione: Testo della tesi
Dimensione
30.72 MB
Formato
Adobe PDF
|
30.72 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/150015