Interests in metamaterials has increased in the recent years, mainly thanks to the possibility to confer them unusual properties through geometry optimization. In particular, periodic structures like photonic and phononic crystals have gain popularity due to their ability to stops electromagnetic and mechanical wave propagation. The developing of new manufacturing techniques, such as additive manufacturing, has led to higher design freedom and thus to the possibility to realize complex shapes. Optimized phononic crystals, able to stop vibration in a certain frequencies range, could nd applications in various engineering elds like civil, mechanics or acoustic. In the present thesis work, the in uence of geometric parameters on the bandgap has been studied through computer modelling. Its results were then used to optimize the shape of a lattice structure that was then printed via Selective Laser Melting. Vibration studies were then carried out to validate the theoretical results. The ability to produce metallic phononic crystals, as proved by this work, could open up a new eld of study, in which structural components could be further characterized giving them functional properties.
L'interesse per i metamateriali e aumentato negli ultimi anni, principalmente grazie alla possibilit a di conferire loro propriet a insolite attraverso l'ottimizzazione della geometria. In particolare, le strutture periodiche come i cristalli fotonici e fononici hanno guadagnato popolarit a grazie alla loro capacit a di fermare la propagazione delle onde elettromagnetiche e meccaniche. Lo sviluppo di nuove tecniche di produzione, come l'additive manufacturing, ha portato a una maggiore libert a di progettazione e quindi alla possibilit a di realizzare forme complesse. Cristalli fononici ottimizzati, in grado di fermare le vibrazioni in un determinato intervallo di frequenze, potrebbero trovare applicazioni in vari campi come l'ingegneria civile, meccanica o acustica. Nel presente lavoro di tesi, l'in uenza dei parametri geometrici sul bandgap e stata studiata attraverso modellazioni al computer. I risultati sono stati utilizzati per ottimizzare una struttura reticolare che e stata poi stampata tramite Selective Laser Melting. Sono stati quindi condotti studi sulle vibrazioni per validare i risultati teorici. La capacit a di produrre cristalli fononici metallici, come dimostrato da questo lavoro, potrebbe aprire un nuovo campo di studio, in cui componenti strutturali potrebbero essere ulteriormente caratterizzati dando loro propriet a funzionali.
Study on a SLM 3D printed lattice structure for vibration attenuation
SCALMANA, GIORGIO
2018/2019
Abstract
Interests in metamaterials has increased in the recent years, mainly thanks to the possibility to confer them unusual properties through geometry optimization. In particular, periodic structures like photonic and phononic crystals have gain popularity due to their ability to stops electromagnetic and mechanical wave propagation. The developing of new manufacturing techniques, such as additive manufacturing, has led to higher design freedom and thus to the possibility to realize complex shapes. Optimized phononic crystals, able to stop vibration in a certain frequencies range, could nd applications in various engineering elds like civil, mechanics or acoustic. In the present thesis work, the in uence of geometric parameters on the bandgap has been studied through computer modelling. Its results were then used to optimize the shape of a lattice structure that was then printed via Selective Laser Melting. Vibration studies were then carried out to validate the theoretical results. The ability to produce metallic phononic crystals, as proved by this work, could open up a new eld of study, in which structural components could be further characterized giving them functional properties.| File | Dimensione | Formato | |
|---|---|---|---|
|
2019_10_Scalmana.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della Tesi
Dimensione
25.79 MB
Formato
Adobe PDF
|
25.79 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/150020