In medicine, the constant need of high drug effectiveness and reduced side effects has led to the development of suitable drug delivery systems in order to increase protection, bioavailability and specificity of the active compounds. Among these, there are polymeric nanoparticles, which have gained much attention in the recent years because of several useful properties such as biocompatibility, tunable size and surface properties, and protection of the encapsulated drug. In this thesis project, ultrasmall polymeric nanoparticles have been developed to entrap hydrophobic drugs and to allow an easy conjugation with specific peptides, in order to achieve targeted drug delivery. Firstly, random comb-like branched copolymers were synthesized from poly(ε caprolactone) (PCL) and poly(ethylene glycol) (PEG)-based macromonomers via Atom Transfer Radical polymerization (ATRP), which allowed to control the molecular weight distribution and the macromolecular architecture. Secondly, PCL-PEG copolymers were post-functionalized with acrylate groups in order to obtain a versatile conjugation with cysteine-containing peptides through Michael-type addition. Cysteine-bearing cyclic arginylglycylaspartic acid (cRGD) was selected for the scope, since this peptide is particularly useful to target different types of pathological cells, from tumor endothelial cells to podocytes involved in kidney diseases. The polymers were nanoprecipitated in aqueous suspensions in order to obtain nanoparticle dispersions. These self-assembled nanostructures presented a hydrophobic PCL core necessary to encapsulate hydrophobic drugs and a hydrophilic PEG shell which may provide “stealth” properties, i.e. to avoid opsonization in vivo. Dexamethasone (DEX) was selected in order to perform drug nanoencapsulation, due to its hydrophobicity and therapeutic effects in many medical applications. Owing to their tunable physicochemical properties, these polymeric nanocarriers may be exploited for an efficient targeted drug delivery in vitro and in vivo.
In medicina, la costante necessità di un'elevata efficacia farmacologica e di effetti collaterali ridotti ha portato allo sviluppo di adeguati sistemi di somministrazione di farmaci al fine di aumentare la protezione, la biodisponibilità e la specificità dei composti attivi. Tra questi, ci sono le nanoparticelle polimeriche, che negli ultimi anni hanno attirato molta attenzione a causa di diverse utili proprietà come biocompatibilità, dimensioni e proprietà di superficie regolabili e protezione del farmaco incapsulato. In questo progetto di tesi sono state sviluppate nanoparticelle polimeriche ultrapiccole per intrappolare farmaci idrofobici e consentire una facile coniugazione con peptidi specifici, al fine di ottenere una consegna mirata dei farmaci. In primo luogo, copolimeri ramificati random a pettine sono stati sintetizzati da macromonomeri a base di poli(ε caprolattone) (PCL) e glicole polietilenico (PEG) tramite polimerizzazione radicalica a trasferimento atomico (ATRP), che ha permesso di controllare la distribuzione del peso molecolare e l’architettura macromolecolare. In secondo luogo, i copolimeri PCL-PEG sono stati post-funzionalizzati con gruppi di acrilato al fine di ottenere una coniugazione versatile con peptidi contenenti cisteina attraverso Michael-type addition. L'acido arginilglicilaspartico ciclico contenente cisteina (cRGD) è stato selezionato per lo scopo, poiché questo peptide è particolarmente utile per colpire diversi tipi di cellule patologiche, dalle cellule endoteliali tumorali ai podociti coinvolti nelle malattie renali. I polimeri sono stati nanoprecipitati in sospensioni acquose al fine di ottenere dispersioni di nanoparticelle. Queste nanostrutture autoassemblate hanno presentato un nucleo idrofobico di PCL necessario per incapsulare farmaci idrofobici e un guscio idrofilico di PEG che può fornire proprietà "stealth", per evitare l'opsonizzazione in vivo. Il desametasone (DEX) è stato selezionato per eseguire la nanoincapsulazione del farmaco, a causa della sua idrofobicità e degli effetti terapeutici in molte applicazioni mediche. Grazie alle loro proprietà fisico-chimiche regolabili, questi nanocarrier polimerici possono essere sfruttati per un efficiente rilascio mirato di farmaci in vitro e in vivo.
Ultrasmall polyester-PEG nanoparticles synthesized through atom transfer radical polymerization and post-functionalization for targeted drug delivery
CATALANO, SAMUELE
2018/2019
Abstract
In medicine, the constant need of high drug effectiveness and reduced side effects has led to the development of suitable drug delivery systems in order to increase protection, bioavailability and specificity of the active compounds. Among these, there are polymeric nanoparticles, which have gained much attention in the recent years because of several useful properties such as biocompatibility, tunable size and surface properties, and protection of the encapsulated drug. In this thesis project, ultrasmall polymeric nanoparticles have been developed to entrap hydrophobic drugs and to allow an easy conjugation with specific peptides, in order to achieve targeted drug delivery. Firstly, random comb-like branched copolymers were synthesized from poly(ε caprolactone) (PCL) and poly(ethylene glycol) (PEG)-based macromonomers via Atom Transfer Radical polymerization (ATRP), which allowed to control the molecular weight distribution and the macromolecular architecture. Secondly, PCL-PEG copolymers were post-functionalized with acrylate groups in order to obtain a versatile conjugation with cysteine-containing peptides through Michael-type addition. Cysteine-bearing cyclic arginylglycylaspartic acid (cRGD) was selected for the scope, since this peptide is particularly useful to target different types of pathological cells, from tumor endothelial cells to podocytes involved in kidney diseases. The polymers were nanoprecipitated in aqueous suspensions in order to obtain nanoparticle dispersions. These self-assembled nanostructures presented a hydrophobic PCL core necessary to encapsulate hydrophobic drugs and a hydrophilic PEG shell which may provide “stealth” properties, i.e. to avoid opsonization in vivo. Dexamethasone (DEX) was selected in order to perform drug nanoencapsulation, due to its hydrophobicity and therapeutic effects in many medical applications. Owing to their tunable physicochemical properties, these polymeric nanocarriers may be exploited for an efficient targeted drug delivery in vitro and in vivo.File | Dimensione | Formato | |
---|---|---|---|
Samuele Catalano_TESI.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
5.65 MB
Formato
Adobe PDF
|
5.65 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/150110