Modern society is strongly based on fossil fuels utilization, which is problematic in terms of environmental issues and energetic security. Alternative routes are currently investigated and, among them, the use of H2 as a clean fuel is studied. However, hydrogen itself mainly derives from syngas, a mixture of H2 and CO in different proportions that is traditionally produced from hydrocarbons. In this regard, biomass as feedstock for syngas has been calling attention as a carbon-free process, since it enables to abate the net releasing of CO2. The isolation of model components and their kinetic study is necessary to comprehend the chemistry behind the processes with biomass-derived multi-component mixtures. In this view, since oxygenates are abundantly present in biomasses, two of them were experimentally investigated in this thesis using an annular reactor coated with Rh/α-Al2O3, which was chosen as catalyst to minimize coke formation. Ethanol was studied as a first alternative fuel due to its favourable properties (easy storing and handling, low toxicity and volatility) and due to the growing market of bio-ethanol. Both Catalytic Partial Oxidation (CPO) and Steam Reforming (SR) tests with ethanol were carried out at different operating conditions. The effects of homogeneous reactions, the co-feeding of nitrogen oxides (NO2, N2O) and water in CPO condition were also investigated. As a second oxygenate, formic acid was chosen since it is significantly present in the aqueous fraction of bio-oil. Its decomposition mechanism in the presence of water was analysed at different space velocities and feed compositions. Besides, CH4 CPO and SR tests were performed as a reference for the analysis of oxygenates. A kinetic model, initially developed for methane CPO, was adapted to simulate formic acid decomposition. Finally, aging tests and Raman analyses were performed for the identification of C-species deposited on the catalysts during these processes.
Nella società attuale l’utilizzo fortemente radicato di combustibili fossili impatta negativamente sull’ambiente e sulla sicurezza energetica. Strategie energetiche alternative sono attualmente investigate e, tra queste, vi è l’utilizzo di H2 come combustibile pulito. L’idrogeno, però, deriva principalmente dal gas di sintesi, una miscela composta principalmente da H2 e CO tradizionalmente prodotta da idrocarburi. A tal proposito, l’utilizzo di biomassa come fonte di syngas ha il beneficio di abbattere l’emissione netta di CO2. L’identificazione di specie modello è necessaria per comprendere i chimismi alla base dei processi di conversione di miscele multicomponenti derivanti da biomassa. Poiché le specie ossigenate sono abbondantemente presenti nella biomassa, due di queste sono state studiate sperimentalmente durante questo lavoro di tesi su un reattore anulare con Rh/α-Al2O3, scelto come catalizzatore per minimizzare la formazione di coke. L’etanolo è stato studiato come primo combustibile alternativo per le sue proprietà (facilità di stoccaggio e trasporto, bassa tossicità e volatilità) e per il crescente mercato di bio-etanolo. Prove di Ossidazione Parziale Catalitica (CPO) e Steam Reforming (SR) di etanolo sono state svolte in diverse condizioni operative. Gli effetti delle reazioni in fase omogenea, della co-alimentazione di ossidi di azoto e acqua in condizioni di CPO sono stati poi investigati. La seconda specie ossigenata scelta è l’acido formico, poiché è significativamente presente nella fase acquosa del bio-olio. Il meccanismo di decomposizione in presenza di H2O è stato analizzato a diverse velocità spaziali e composizioni della miscela reagente. Inoltre, sono state svolte prove di CPO e SR di metano, utilizzate come riferimento per l’analisi delle specie ossigenate. Un modello cinetico, sviluppato precedentemente per la CPO di metano, è stato esteso per simulare la decomposizione di acido formico. Infine, prove di invecchiamento e analisi Raman sono state svolte per identificare le specie carboniose formatesi sui catalizzatori durante i processi studiati.
Syngas production from ethanol and formic acid over Rh/Al2O3 : a kinetic study in annular reactor
PIAZZA, VERONICA;BAYRAM, AYTEN GULCE
2018/2019
Abstract
Modern society is strongly based on fossil fuels utilization, which is problematic in terms of environmental issues and energetic security. Alternative routes are currently investigated and, among them, the use of H2 as a clean fuel is studied. However, hydrogen itself mainly derives from syngas, a mixture of H2 and CO in different proportions that is traditionally produced from hydrocarbons. In this regard, biomass as feedstock for syngas has been calling attention as a carbon-free process, since it enables to abate the net releasing of CO2. The isolation of model components and their kinetic study is necessary to comprehend the chemistry behind the processes with biomass-derived multi-component mixtures. In this view, since oxygenates are abundantly present in biomasses, two of them were experimentally investigated in this thesis using an annular reactor coated with Rh/α-Al2O3, which was chosen as catalyst to minimize coke formation. Ethanol was studied as a first alternative fuel due to its favourable properties (easy storing and handling, low toxicity and volatility) and due to the growing market of bio-ethanol. Both Catalytic Partial Oxidation (CPO) and Steam Reforming (SR) tests with ethanol were carried out at different operating conditions. The effects of homogeneous reactions, the co-feeding of nitrogen oxides (NO2, N2O) and water in CPO condition were also investigated. As a second oxygenate, formic acid was chosen since it is significantly present in the aqueous fraction of bio-oil. Its decomposition mechanism in the presence of water was analysed at different space velocities and feed compositions. Besides, CH4 CPO and SR tests were performed as a reference for the analysis of oxygenates. A kinetic model, initially developed for methane CPO, was adapted to simulate formic acid decomposition. Finally, aging tests and Raman analyses were performed for the identification of C-species deposited on the catalysts during these processes.File | Dimensione | Formato | |
---|---|---|---|
2019_10_Bayram_Piazza.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
5.4 MB
Formato
Adobe PDF
|
5.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/150149