The conventional drugs formulations are traditionally administered directly as they are, but this approach is not exempt from problems: potential toxicity, correct dosing over time, bacterial resistance, not suitable pharmacokinetics and pharmacodynamics are just few examples. Starting from the second half of the 20th century, drug delivery devices started to be developed to reduce the side-effects related to the conventional drug administrations; more recently, hydrogels have established a relevant position among the variety of systems available because of their biocompatibility, biodegradability and capability to entrap nanoparticles containing drugs into their matrix, releasing them over time in a controlled way. However, hydrogels, and other similar delivery devices allow the simultaneous release of certain kind of drugs only with specific properties, such as appropriate lipophilicity, hydrophilicity, determined molecular weights and so on. In the last fifteen years, new non-equilibrium structures formed by two non-mixable liquids and stabilized by a jammed layer of solid nanoparticles at their interface have been discovered and their characterization is now emerging more diffusely. The Bicontinuous Interfacially Jammed EmuLsions gels, also known as bijels, are promising systems for drug delivery applications because of their double nature. Indeed, the two immiscible phases may be constituted by both an aqueous and an organic layer and, as a consequence, may be able to load both hydrophilic and lipophilic drugs at the same time, simultaneously releasing them in a controlled way. In this context, this thesis work was aimed to identify the synthetic route and the optimal conditions of the production of bijel-like systems. In this case, one component polymerized during the production, leading to the formation of a creamy solid with a porous structure able to entrap the aqueous phase as well. The products were then tested to verify their capability to act as controlled drug delivery devices. Once ε-caprolactone was chosen as the monomer to be used for our purpose, the first phase of the research was devoted to the identification of a synthetic pathway to let the polymerization occur at room conditions, without the use of any solvent, in the shortest time possible and, especially, in a completely biocompatible way. Successively, four different kinds of nanoparticles (hydroxyapatite, barium titanate, cerium oxide and PEG-Jeffamine nanogels) were investigated to identify the optimal synthetic and stabilization formulation, to let the system create a stable colloidal dispersion, to be used in the production of the bijel-like structures. Once all those elements were prepared, the last synthetic step was related to the identification of the optimal parameters for the formulation of the desired systems, investigating the effect on the final result of multiple parameters, such as temperature, the mass of solid added, the type of solid, the ratio between water and caprolactone. Finally, a deep characterization of the structures obtained was performed to identify their chemical nature, the extent of the polymerization, the morphology and their ability to control the release of both lipophilic and hydrophilic drug mimetics.
Le formulazioni tradizionali di farmaci prevedono generalmente la loro diretta somministrazione, tuttavia questo metodo non è esente da problemi: potenziali tossicità, un corretto dosaggio nel tempo, insorgenza di resistenze batteriche, farmacocinetica e farmacodinamica non ottimali ne sono solo alcuni esempi. A partire dalla seconda metà del XX secolo, metodi per ottenere il rilascio controllato di farmaci hanno iniziato ad essere sviluppati per ridurre gli effetti collaterali legati alla loro somministrazione; più recentemente, gli idrogeli sono diventati uno dei metodi di riferimento in questo settore grazie alla loro biocompatibilità, biodegradabilità, e alla loro capacità di intrappolare nella loro matrice nanoparticelle contenenti farmaci, rilasciandoli in maniera controllata nel tempo. Nonostante questo, gli idrogeli e altri sistemi simili sono in grado di funzionare correttamente solo se le molecole o le particelle caricate presentano specifiche proprietà, come ad esempio appropriata lipofilia, idrofilia o specifici valori di pesi molecolari. Negli ultimi quindici anni è stata scoperto un nuovo tipo di struttura in condizioni di non equilibrio e formata da due fasi liquide immiscibili, stabilizzare da nanoparticelle che si accumulano all’interfaccia, e la cui caratterizzazione sta diventando sempre più materia di studio. Questi gel bicontinui con interfacce gremite di particelle solide, chiamati anche bijel, sono molto promettenti per applicazioni in materia di rilascio controllato per via della loro duplice natura. Infatti, le due fasi immiscibili possono essere, rispettivamente, organica ed acquosa, permettendo di introdurre sia molecole lipofile che idrofile al loro interno ed, eventualmente, rilasciarle contemporaneamente in maniera controllata nel tempo. All’interno di tale panorama, questo lavoro di tesi ha avuto lo scopo di identificare una via sintetica e le condizioni ottimali per la produzione di sistemi simili ai bijel. Nel nostro caso, il costituente è un monomero che viene fatto polimerizzare durante il processo di produzione portando alla formazione di un solido cremoso con una struttura porosa in grado di intrappolare al suo interno anche la fase acquosa. Successivamente, i prodotti ottenuti sono stati testati al fine di verificarne l’eventuale capacità di rilasciare molecole in maniera controllata. Dopo aver scelto come monomero di riferimento il caprolattone, la prima fase della ricerca è stata dedicata all’identificazione di una strategia di sintesi per far avvenire la polimerizzazione in condizioni ambiente, senza solvente, rapidamente e in maniera totalmente biocompatibile. Successivamente, quattro diversi tipi di nanoparticelle (idrossiapatite, titanato di bario, ceria e nanogel di PEG-Jeffammina) sono stati valutati per identificare le migliori sintesi e i metodi di stabilizzazione ottimali per creare dispersioni colloidali, da usare nella preparazione delle strutture ispirate ai bijel menzionate precedentemente. Una volta che tutti i componenti sono stati prodotti e caratterizzati, l’ultimo passo è stato l’identificazione di una formulazione adeguata per ottenere i sistemi desiderati, testando l’effetto di diversi parametri quali temperatura, massa del solido contenuta nel campione, tipo di solido, rapporto tra acqua e caprolattone. Infine, è stata eseguita un’estesa caratterizzazione dei composti in termini di natura chimica, efficacia della polimerizzazione, morfologia e capacità di rilasciare in maniera controllata mimetici di farmaci sia lipofili che idrofili.
Bijel-like structures : synthesis and characterization of novel drug delivery systems
MARCHETTI, ALESSANDRO
2018/2019
Abstract
The conventional drugs formulations are traditionally administered directly as they are, but this approach is not exempt from problems: potential toxicity, correct dosing over time, bacterial resistance, not suitable pharmacokinetics and pharmacodynamics are just few examples. Starting from the second half of the 20th century, drug delivery devices started to be developed to reduce the side-effects related to the conventional drug administrations; more recently, hydrogels have established a relevant position among the variety of systems available because of their biocompatibility, biodegradability and capability to entrap nanoparticles containing drugs into their matrix, releasing them over time in a controlled way. However, hydrogels, and other similar delivery devices allow the simultaneous release of certain kind of drugs only with specific properties, such as appropriate lipophilicity, hydrophilicity, determined molecular weights and so on. In the last fifteen years, new non-equilibrium structures formed by two non-mixable liquids and stabilized by a jammed layer of solid nanoparticles at their interface have been discovered and their characterization is now emerging more diffusely. The Bicontinuous Interfacially Jammed EmuLsions gels, also known as bijels, are promising systems for drug delivery applications because of their double nature. Indeed, the two immiscible phases may be constituted by both an aqueous and an organic layer and, as a consequence, may be able to load both hydrophilic and lipophilic drugs at the same time, simultaneously releasing them in a controlled way. In this context, this thesis work was aimed to identify the synthetic route and the optimal conditions of the production of bijel-like systems. In this case, one component polymerized during the production, leading to the formation of a creamy solid with a porous structure able to entrap the aqueous phase as well. The products were then tested to verify their capability to act as controlled drug delivery devices. Once ε-caprolactone was chosen as the monomer to be used for our purpose, the first phase of the research was devoted to the identification of a synthetic pathway to let the polymerization occur at room conditions, without the use of any solvent, in the shortest time possible and, especially, in a completely biocompatible way. Successively, four different kinds of nanoparticles (hydroxyapatite, barium titanate, cerium oxide and PEG-Jeffamine nanogels) were investigated to identify the optimal synthetic and stabilization formulation, to let the system create a stable colloidal dispersion, to be used in the production of the bijel-like structures. Once all those elements were prepared, the last synthetic step was related to the identification of the optimal parameters for the formulation of the desired systems, investigating the effect on the final result of multiple parameters, such as temperature, the mass of solid added, the type of solid, the ratio between water and caprolactone. Finally, a deep characterization of the structures obtained was performed to identify their chemical nature, the extent of the polymerization, the morphology and their ability to control the release of both lipophilic and hydrophilic drug mimetics.File | Dimensione | Formato | |
---|---|---|---|
2019 Marchetti Alessandro.pdf
solo utenti autorizzati dal 16/09/2022
Descrizione: Testo della tesi
Dimensione
6.17 MB
Formato
Adobe PDF
|
6.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/150155