The aim of this Thesis is the inclusion of the description of the turbulent phenomena in the detailed numerical modeling of heterogenous catalytic reactors. The complex interplay between surface chemistry and turbulence introduces additional challenges with respect to conventional numerical simulation of reactive turbulent flows requiring a fundamental investigation of the mutual interactions. As a first step, a reactive Computational Fluid Dynamic (CFD) numerical tool able to simulate fixed bed reactors in turbulent conditions, by means of a multiscale modelling approach, is developed. The numerical tool is based on the existent catalyticFOAM framework which has been developed to enable the coupling of detailed heterogenous chemistry with the solution of the mass, energy and momentum balance equation in arbitrary geometry. In particular, this work extends the previous framework introducing additional features to enable the modeling of fixed bed reactor in turbulent conditions. In doing so, the governing equations are modified in order to account for additional turbulent contributions to the mass, energy and momentum transport by means of both RANS and LES closure models. This work aims at developing an effective coupling between the existent treatment of the heterogenous chemistry provided by catalyticFOAM and the solution of the turbulent quantities by means of the features provided in the OpenFOAM framework. To achieve this purpose, catalyticFOAM has been modified to employ the Sutherland formulation of the transport properties. Moreover, the enthalpic balance has been rewritten in terms of sensible enthalpy required by the OpenFOAM framework. The reliability and accuracy of the new framework are assessed through two different levels. On one hand, a laminar heterogeneous combustion of methane over Rhodium has been carried out to prove the accuracy of the new solver in laminar conditions to assess the proper implementation of the new enthalpy balance and of the transport properties. The results are directly compared with the existent framework recovering and excellent agreement in both spatial and temporal profile for all the gas species, coverages, temperature and velocity. On the other hand, the assessment in turbulent conditions is carried out by the comparison of the simulation results with literature experimental and numerical data of turbulent channel flow catalytic combustion of hydrogen. Several operating conditions have been analysed. A good agreement has been observed with respect to the experimental data, while an excellent accordance has been found with respect to state-of-the-art numerical simulation. Finally, a comparison between a Direct Numerical Simulations present in literature and the corresponding simulation made with the framework is presented to discuss the accuracy of different turbulence closure model in reproducing the near wall behavior in reactive conditions. As a whole, the present work represents a further step towards the multiscale simulation of chemical reactors enabling the coupling of detailed heterogeneous chemistry with both laminar and turbulent flow conditions.
Lo scopo di questo lavoro di tesi è l’introduzione della descrizione dei fenomeni di trasporto turbolenti all’interno della modellazione numerica dettagliata di reattori chimica eterogenei. La complessa interazione tra la chimica superficiale e la turbolenza introduce sfide aggiuntive rispetto alla modellazione numerica convenzionale di flussi reattivi turbolenti richiedendo una investigazione fondamentale delle mutue influenze. Questo lavoro di Tesi propone un codice numerico per la fluidodinamica computazionale (CFD) capace di simulare letti fissi in condizioni turbolente, attraverso un approccio di modellazione multiscala. Il codice è basato su catalyticFOAM un framework già esistente, il quale è stato sviluppato per rendere possibile l’accoppiamento di chimica eterogenea e soluzione delle equazioni di bilancio di massa, energia e quantità di moto in geometrie arbitrarie. In particolare, questo lavoro estende il precedente framework, introducendo caratteristiche che consento la modellazione di letti fissi in condizioni turbolente. Per consentire ciò, le equazioni di bilancio sono modificate in modo da tenere conto per i contributi turbolenti addizionali presenti nel trasporto di massa, energia e quantità di moto, attraverso modelli di chiusura sia RANS che LES. Questo lavoro vuole sviluppare un accoppiamento completo tra la già presente modellazione della chimica eterogenea assicurata da catalyticFOAM e la soluzione delle quantità turbolente attraverso le funzionalità apportate da OpenFOAM. Per raggiungere questo scopo, catalyticFOAM è stato modificato così da utilizzare per le proprietà di trasporto la formulazione di Sutherland. Inoltre, il bilancio entalpico è stato riscritto in termini di entalpia sensibile, come richiesto dal framework computazionale di OpenFOAM. L’affidabilità e l’accuratezza del nuovo framework sono verificate attraverso due differenti livelli. Da un lato, una combustione eterogenea laminare di metano su Rodio è eseguita, così da testare l’accuratezza del nuovo solver in condizioni laminare e per verificare la corretta implementazione del nuovo bilancio entalpico e delle nuove proprietà di trasporto. I risultati sono direttamente comparati con il framework originario, ottenendo un accordo eccellente sia nello spazio che nel tempo per quanto riguarda i profili di tutte le specie in fase gassosa, il coverage del catalizzatore, la temperatura e la velocità. Dall’altro lato, sono testate le funzionalità del nuovo solver in condizioni turbolente, attraverso una comparazione dei risultati ottenuti dal nuovo framework con dati sperimentali e numerici forniti in letteratura, di un canale in cui si è svolta la combustione catalitica di idrogeno in condizioni turbolente. Diverse condizioni operative sono state analizzare. È stato verificato un buon accordo con i dati sperimentali, mentre un ottimo accordo è stato trovato rispetto ai dati numerici ottenuti con una simulazione numerica che rappresenta lo stato dell’arte. Infine, una comparazione tra una Direct Numerical Simulation (DNS), presente in letteratura e la corrispondente simulazione fatta attraverso il framework computazionale qui presentato, è mostrata per discutere l’accuratezza dei diversi modelli di chiusura per quanto riguarda il comportamento vicino alla parete in condizioni reattive. Nel complesso, questo lavoro rappresenta un ulteriore passo in avanti nella simulazione multiscala di reattori chimici, consentendo l’accoppiamento di chimica eterogenea dettagliata sia in regime laminare che in regime turbolento.
Development and assessment of an advanced computational framework for the CFD modelling of heterogeneous reactors in turbulent conditions
NARDI, LUCA
2018/2019
Abstract
The aim of this Thesis is the inclusion of the description of the turbulent phenomena in the detailed numerical modeling of heterogenous catalytic reactors. The complex interplay between surface chemistry and turbulence introduces additional challenges with respect to conventional numerical simulation of reactive turbulent flows requiring a fundamental investigation of the mutual interactions. As a first step, a reactive Computational Fluid Dynamic (CFD) numerical tool able to simulate fixed bed reactors in turbulent conditions, by means of a multiscale modelling approach, is developed. The numerical tool is based on the existent catalyticFOAM framework which has been developed to enable the coupling of detailed heterogenous chemistry with the solution of the mass, energy and momentum balance equation in arbitrary geometry. In particular, this work extends the previous framework introducing additional features to enable the modeling of fixed bed reactor in turbulent conditions. In doing so, the governing equations are modified in order to account for additional turbulent contributions to the mass, energy and momentum transport by means of both RANS and LES closure models. This work aims at developing an effective coupling between the existent treatment of the heterogenous chemistry provided by catalyticFOAM and the solution of the turbulent quantities by means of the features provided in the OpenFOAM framework. To achieve this purpose, catalyticFOAM has been modified to employ the Sutherland formulation of the transport properties. Moreover, the enthalpic balance has been rewritten in terms of sensible enthalpy required by the OpenFOAM framework. The reliability and accuracy of the new framework are assessed through two different levels. On one hand, a laminar heterogeneous combustion of methane over Rhodium has been carried out to prove the accuracy of the new solver in laminar conditions to assess the proper implementation of the new enthalpy balance and of the transport properties. The results are directly compared with the existent framework recovering and excellent agreement in both spatial and temporal profile for all the gas species, coverages, temperature and velocity. On the other hand, the assessment in turbulent conditions is carried out by the comparison of the simulation results with literature experimental and numerical data of turbulent channel flow catalytic combustion of hydrogen. Several operating conditions have been analysed. A good agreement has been observed with respect to the experimental data, while an excellent accordance has been found with respect to state-of-the-art numerical simulation. Finally, a comparison between a Direct Numerical Simulations present in literature and the corresponding simulation made with the framework is presented to discuss the accuracy of different turbulence closure model in reproducing the near wall behavior in reactive conditions. As a whole, the present work represents a further step towards the multiscale simulation of chemical reactors enabling the coupling of detailed heterogeneous chemistry with both laminar and turbulent flow conditions.File | Dimensione | Formato | |
---|---|---|---|
2019_10_Nardi.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
3.59 MB
Formato
Adobe PDF
|
3.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/150169