Nitinol is recognized today as a material of choice for medical implants and devices, due to its unique mechanical properties and excellent biocompatibility. In particular nitinol has become the best candidate material for manufacturing self–expanding peripheral stents, heart valve frames, endovascular grafts and many other cardiovascular devices (annuloplasty rings, catheter components, guidewires, etc.). Heart valve disease and peripheral artery disease are the pathologies where nitinol has found the main fields of application within cardiovascular devices. The present dissertation is aimed at giving the insights needed to design nitinol cardiovascular devices. In particular, both scientific and technological details are analyzed, including the key factors for raw material choice, the equipment needed for manufacturing and testing the devices, the design features and process history role and the criticalities to be faced out in raw material and device testing. Along this purpose, the experience done by the author is presented: building up a complete prototyping laboratory, the design choices and process strategy made for producing the specimens and the stents used for material and device characterization, the study undergone on the raw material in order to understand its role on the performances of the final device. Firstly, a brief introduction to anatomy and pathology of cardiovascular system is presented, focusing on heart valve disease and peripheral artery disease. An overview of cardiovascular devices and nitinol properties is also given, in order to show how this material has the peculiar features needed to address the clinical challenges. The nitinol tube fabrication techniques are illustrated, explaining pros and cons of some choices. The manufacturing steps and equipment needed to obtain nitinol devices are then described and detailed. For each technology an evaluation of the state of the art is carried out and the pros and cons of the different opportunities available are analyzed. Furthermore it is reported the experience done in the Medtronic Invatec company where a complete nitinol prototyping laboratory was built up, explaining the technical choices adopted and the technical / cost compromises faced out in a real world environment. Material characterization and device characterization are crucial steps during nitinol device design. The importance of using the correct specimen geometry for the specific characterization is a key factor during material characterization; for this reason it is analyzed the geometry (discussing pros and cons) of the different specimens commonly used for mechanical characterization, explaining their limitations and the choices that led to identify the specimens used in this work. The thermo–mechanical characterization undergone is then reported, highlighting how this is needed to gather the correct values of the material constitutive model. The role of the design choices is hence discussed as a key factor for nitinol stents performances, as well the process strategy (mainly shape setting) to be adopted on stents. This is the reason why, after a material characterization, it is however very important to test the final device (vascular stent or heart valve frame) with dedicated methods. The design choices and the shape setting strategy adopted on the stents manufactured are detailed, focusing on radial force determination and crush resistance tests undergone on these stents, since they are key performance features of both implant phase (when the device is released from the delivery system) and the long term interaction with the implant site (vessel wall for vascular stents or valve annulus for heart valve frames). Finally, the role of the raw material choice on nitinol device performances is analyzed, since the manufacturing techniques of ingot and nitinol tube have a critical impact on the level of inclusions and the level of cold–work found in the material used to process the device. In particular, an ad hoc study has been performed with the specific purpose of investigating the impact of different raw material properties (strongly dependent from cycles of cold working and annealing and thus from grain size distribution along the wall thickness of the Nitinol tube) on radial forces and thermo–mechanical properties achieved by the final stent. Some studies have been performed to address this question on cold–worked Nitinol wires and their findings show that time and temperature of heat treatment and the amount of prior cold–work all influence the material response. However, no studies have been ever performed on tubes and on how the different levels of initial cold working influence the thermal and mechanical properties of the final device.
Il nitinol è oggi riconosciuto tra i materiali scelti per impianti e dispositivi medici, grazie alle sue proprietà meccaniche uniche e all’eccellente biocompatibilità. In particolare, il nitinol è diventato il miglior materiale candidato per la produzione di stent periferici auto-espandibili, strutture di valvole cardiache, innesti endovascolari e molti altri dispositivi cardiovascolari (anelli per annuloplastica, componenti di cateteri, fili guida, ecc.). Le patologie delle valvole cardiache e delle arterie periferiche sono quelle in cui il nitinol ha trovato i principali campi di applicazione all’interno dei dispositivi cardiovascolari. La presente tesi ha lo scopo di fornire gli approfondimenti necessari per progettare dispositivi cardiovascolari in nitinol. In particolare, vengono analizzati i dettagli scientifici e tecnologici, compresi i fattori chiave per la scelta delle materie prime, le attrezzature necessarie per la produzione e la verifica dei dispositivi, il ruolo delle scelte progettuali e della storia del processo di fabbricazione e le criticità da affrontare nei test sulle materie prime e sui dispositivi . A questo scopo, viene presentata l’esperienza fatta dall’autore: la costruzione di un laboratorio completo di prototipazione, le scelte progettuali e la strategia di processo di fabbricazione adottate per produrre i campioni e gli stent utilizzati per la caratterizzazione del materiale e dei dispositivi, lo studio condotto sulla materia prima per comprendere il suo ruolo sulle prestazioni del dispositivo finale. In primo luogo, viene presentata una breve introduzione all’anatomia e alla patologia del sistema cardiovascolare, concentrandosi sulla cardiopatia e sulla patologia dell’arteria periferica. Viene inoltre fornita una panoramica dei dispositivi cardiovascolari e delle proprietà del nitinol, al fine di mostrare come questo materiale abbia le caratteristiche peculiari necessarie per affrontare le sfide cliniche. Sono poi illustrate le tecniche di fabbricazione del tubo di nitinol, spiegando vantaggi e svantaggi di alcune scelte. Vengono quindi descritti e dettagliati i passaggi del processo di fabbricazione e le attrezzature necessarie per ottenere i dispositivi in nitinol. Per ogni tecnologia viene effettuata una valutazione dello stato dell’arte e vengono analizzati i pro e i contro delle diverse opportunità disponibili. Inoltre, viene riportata l’esperienza fatta nell’azienda Medtronic Invatec, dove è stato allestito un laboratorio completo di prototipazione del nitinol, spiegando le scelte tecniche adottate e i compromessi tecnico-economici affrontati in un ambiente reale di un’azienda del settore. La caratterizzazione del materiale e la caratterizzazione del dispositivo sono passaggi cruciali durante la progettazione del dispositivo in nitinol. L’importanza di utilizzare la corretta geometria del campione per la caratterizzazione specifica è un fattore chiave durante la caratterizzazione del materiale; per questo motivo viene analizzata la geometria (discutendo pro e contro) dei diversi campioni comunemente usati per la caratterizzazione meccanica, spiegando i loro limiti e le scelte che hanno portato all’identificazione dei campioni utilizzati in questo lavoro. Viene quindi riportata la caratterizzazione termo-meccanica effettuata, evidenziando come ciò sia necessario per raccogliere i valori corretti del modello costitutivo del materiale. Il ruolo delle scelte progettuali viene quindi discusso come un fattore chiave per le prestazioni degli stent in nitinol, così come la strategia di processo produttivo (principalmente termoformatura) da adottare sugli stent. Questo è il motivo per cui, dopo una caratterizzazione del materiale, è comunque molto importante testare il dispositivo finale (stent vascolare o struttura della valvola cardiaca) con metodi dedicati. Sono quindi dettagliate le scelte progettuali e la strategia di termoformatura adottate sugli stent prodotti, concentrandosi sui test di determinazione della forza radiale e di resistenza allo schiacciamento a cui questi stent sono stati sottoposti, in quanto caratteristiche chiave sia durante la fase di impianto del dispositivo (quando cioè viene rilasciato dal sistema di impianto), sia durante l’interazione a lungo termine con il sito di impianto (la parete del vaso per gli stent vascolari o l’annulus valvolare per le valvole cardiache). Infine, viene analizzato il ruolo della scelta della materia prima sulle prestazioni del dispositivo in nitinol, poiché le tecniche di fabbricazione del lingotto e del tubo in nitinol hanno un impatto critico sul livello di inclusioni e sul livello di lavorazione a freddo che si riscontra nel materiale utilizzato per produrre il dispositivo. In particolare, è stato condotto uno studio ad hoc con lo scopo specifico di studiare l’impatto delle diverse proprietà delle materie prime (fortemente dipendenti dai cicli di lavorazione a freddo e ricottura e quindi dalla distribuzione granulometrica lungo lo spessore delle pareti del tubo di nitinol) sulle forze radiali e sulle proprietà termo-meccaniche raggiunte infine dallo stent. Sono stati condotti alcuni studi in letteratura per rispondere a questa domanda sui fili di nitinol lavorati a freddo e i loro risultati mostrano che sia tempo e temperatura del trattamento termico, sia la quantità di precedenti lavorazioni a freddo, influenzano la risposta del materiale. Tuttavia, non sono mai stati condotti studi sui tubi e su come i diversi livelli di lavorazione a freddo iniziale influenzano le proprietà termiche e meccaniche del dispositivo finale.
The scientific and technological insights needed to design nitinol medical devices
GUALA, CARLO
Abstract
Nitinol is recognized today as a material of choice for medical implants and devices, due to its unique mechanical properties and excellent biocompatibility. In particular nitinol has become the best candidate material for manufacturing self–expanding peripheral stents, heart valve frames, endovascular grafts and many other cardiovascular devices (annuloplasty rings, catheter components, guidewires, etc.). Heart valve disease and peripheral artery disease are the pathologies where nitinol has found the main fields of application within cardiovascular devices. The present dissertation is aimed at giving the insights needed to design nitinol cardiovascular devices. In particular, both scientific and technological details are analyzed, including the key factors for raw material choice, the equipment needed for manufacturing and testing the devices, the design features and process history role and the criticalities to be faced out in raw material and device testing. Along this purpose, the experience done by the author is presented: building up a complete prototyping laboratory, the design choices and process strategy made for producing the specimens and the stents used for material and device characterization, the study undergone on the raw material in order to understand its role on the performances of the final device. Firstly, a brief introduction to anatomy and pathology of cardiovascular system is presented, focusing on heart valve disease and peripheral artery disease. An overview of cardiovascular devices and nitinol properties is also given, in order to show how this material has the peculiar features needed to address the clinical challenges. The nitinol tube fabrication techniques are illustrated, explaining pros and cons of some choices. The manufacturing steps and equipment needed to obtain nitinol devices are then described and detailed. For each technology an evaluation of the state of the art is carried out and the pros and cons of the different opportunities available are analyzed. Furthermore it is reported the experience done in the Medtronic Invatec company where a complete nitinol prototyping laboratory was built up, explaining the technical choices adopted and the technical / cost compromises faced out in a real world environment. Material characterization and device characterization are crucial steps during nitinol device design. The importance of using the correct specimen geometry for the specific characterization is a key factor during material characterization; for this reason it is analyzed the geometry (discussing pros and cons) of the different specimens commonly used for mechanical characterization, explaining their limitations and the choices that led to identify the specimens used in this work. The thermo–mechanical characterization undergone is then reported, highlighting how this is needed to gather the correct values of the material constitutive model. The role of the design choices is hence discussed as a key factor for nitinol stents performances, as well the process strategy (mainly shape setting) to be adopted on stents. This is the reason why, after a material characterization, it is however very important to test the final device (vascular stent or heart valve frame) with dedicated methods. The design choices and the shape setting strategy adopted on the stents manufactured are detailed, focusing on radial force determination and crush resistance tests undergone on these stents, since they are key performance features of both implant phase (when the device is released from the delivery system) and the long term interaction with the implant site (vessel wall for vascular stents or valve annulus for heart valve frames). Finally, the role of the raw material choice on nitinol device performances is analyzed, since the manufacturing techniques of ingot and nitinol tube have a critical impact on the level of inclusions and the level of cold–work found in the material used to process the device. In particular, an ad hoc study has been performed with the specific purpose of investigating the impact of different raw material properties (strongly dependent from cycles of cold working and annealing and thus from grain size distribution along the wall thickness of the Nitinol tube) on radial forces and thermo–mechanical properties achieved by the final stent. Some studies have been performed to address this question on cold–worked Nitinol wires and their findings show that time and temperature of heat treatment and the amount of prior cold–work all influence the material response. However, no studies have been ever performed on tubes and on how the different levels of initial cold working influence the thermal and mechanical properties of the final device.File | Dimensione | Formato | |
---|---|---|---|
2019_12_PhD_Guala.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Guala Carlo - PhD Thesis
Dimensione
26.57 MB
Formato
Adobe PDF
|
26.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/150638