The aim of this Thesis Work is the study of the effects induced by a thermal gradient in a colloidal system confined in two dimensions (2D). The application of a temperature gradient to a colloidal suspension generates a drift motion of the dispersed particles called thermophoresis, whose intensity and direction are intimately related to the nature of the particle-solvent interactions. The non-equilibrium physical mechanisms which give rise to thermophoresis, an effect that can be profitably used to manipulate dispersed systems and soft materials, are not yet completely clear, and even less it is known about the effects generated by a thermal gradient on "soft" solids, such as colloidal crystals. A particularly promising experimental approach consists in optothermal techniques, in which localized thermal gradients originate from the sample's absorption of laser radiation. However, in a three-dimensional fluid sample, this configuration often produces natural convection, which can only be avoided by strictly confining the fluid along the direction of the weight. In this Thesis Work, I have designed and built 2D confinement cells, then generating 2D colloidal crystals within them, exploiting a controlled sedimentation drift ("gravity-driven colloids assembly"). These structures were then subjected to thermal gradients in two different ways, i.e. by exploiting the absorption of a near infrared laser by the aqueous solvent, or by generating a linear thermal gradient between two thermoelectric modules. The first configuration showed how thermal forces are less relevant with respect to optical trapping effects. The second method proved to be more effective in highlighting and quantifying thermophoretic effects, allowing the determination for silica colloidal particles of the thermophoretic mobility and the Soret coefficient, which quantifies the magnitude of the effect, as well as performing a first qualitative analysis of the thermal stresses in 2D colloidal crystals.
Obiettivo di questo lavoro di Tesi è lo studio degli effetti indotti da un gradiente termico in un sistema colloidale confinato in due dimensioni (2D). L’applicazione di un gradiente di temperatura ad una sospensione colloidale genera un moto di deriva delle particelle disperse detto termoforesi, la cui intensità e direzione sono intimamente connesse alla natura delle interazioni tra particella e solvente. I meccanismi fisici di non equilibrio che danno origine alla termoforesi, effetto che può essere proficuamente utilizzato per manipolare sistemi dispersi e materiali soffici, non sono ancora completamente chiari, ed ancor meno noti sono gli effetti generati da un gradiente termico su solidi “soffici” quali i cristalli colloidali. Un approccio sperimentale particolarmente promettente è costituito dalle tecniche opto-termiche, in cui gradienti termici localizzati vengono generati dall’assorbimento da parte del campione di radiazione laser. Tuttavia, in un campione fluido tridimensionale questa configurazione genera spesso convezione naturale, che può essere evitata solo confinando strettamente il fluido lungo la direzione della forza peso. Nel lavoro di Tesi ho progettato e realizzato celle di confinamento 2D, generando poi all’interno di esse cristalli colloidali 2D, sfruttando un drift di sedimentazione controllato (“gravity-driven colloids assembly”). Queste strutture sono state poi sottoposte a gradienti termici generati in due modi distinti, ossia sfruttando l’assorbimento da parte del solvente acquoso di un laser nel vicino infrarosso, oppure generando un gradiente termico lineare tra due moduli termoelettrici. La prima configurazione ha mostrato come le forze termiche siano comunque di minore entità rispetto a quelle di intrappolamento ottico. Più efficace al fine di mettere in luce e quantificare gli effetti termoforetici si è rivelato il secondo metodo, che ha consentito di determinare per particelle colloidali di silice la mobilità termoforetica ed il coefficiente Soret, che quantifica l’ampiezza dell’effetto, nonché di compiere una prima analisi qualitativa degli stress termici in cristalli colloidali 2D.
Thermal forces in 2D colloids
RUZZI, VINCENZO
2018/2019
Abstract
The aim of this Thesis Work is the study of the effects induced by a thermal gradient in a colloidal system confined in two dimensions (2D). The application of a temperature gradient to a colloidal suspension generates a drift motion of the dispersed particles called thermophoresis, whose intensity and direction are intimately related to the nature of the particle-solvent interactions. The non-equilibrium physical mechanisms which give rise to thermophoresis, an effect that can be profitably used to manipulate dispersed systems and soft materials, are not yet completely clear, and even less it is known about the effects generated by a thermal gradient on "soft" solids, such as colloidal crystals. A particularly promising experimental approach consists in optothermal techniques, in which localized thermal gradients originate from the sample's absorption of laser radiation. However, in a three-dimensional fluid sample, this configuration often produces natural convection, which can only be avoided by strictly confining the fluid along the direction of the weight. In this Thesis Work, I have designed and built 2D confinement cells, then generating 2D colloidal crystals within them, exploiting a controlled sedimentation drift ("gravity-driven colloids assembly"). These structures were then subjected to thermal gradients in two different ways, i.e. by exploiting the absorption of a near infrared laser by the aqueous solvent, or by generating a linear thermal gradient between two thermoelectric modules. The first configuration showed how thermal forces are less relevant with respect to optical trapping effects. The second method proved to be more effective in highlighting and quantifying thermophoretic effects, allowing the determination for silica colloidal particles of the thermophoretic mobility and the Soret coefficient, which quantifies the magnitude of the effect, as well as performing a first qualitative analysis of the thermal stresses in 2D colloidal crystals.File | Dimensione | Formato | |
---|---|---|---|
2019_12_Ruzzi.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
10.49 MB
Formato
Adobe PDF
|
10.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/150823