The thesis deals with the analysis of continuous systems and diffusion problems associated with ordinary differential equations, and their approximated solution obtained through the Finite Difference Method. The introductory chapters discuss the characteristics of the method in the context of the Variational Principles and of the approximated solution procedures. Afterwards, frequently recurrent equations related to one-dimensional structures are selected, grouping them depending on the order of derivatives. The variety of the problems that each equation can describe is showed: the same algorithm can be applied in different contexts. Moreover, for each problem the theoretical aspects and the analytical solution, if available, are presented. The exact solution is compared with the Finite Difference one, in order to verify the accuracy and the convergence of the results. The most interesting cases that have been discussed are: - The steel-concrete bonding behavior in a specimen subjected to traction in a linear elastic regime. The same problem is analyzed in accordance with the constitutive laws of the Tension Chord Model, under the action of an increasing load. - The analysis of box girder bridges under non uniform torsion and distortional effects. - The study of the behavior of coupled structures considering geometrical non linearities: suspended bridges and arch bridges with rigid deck. - The analysis of the behavior of deformable linear systems as, for example, cables, ribbon bridges, underwater tunnels, especially in the portion near to rigid anchorages. - The analysis of a shell structure (elliptic paraboloid), studied exploiting the Shadows Theory, that is a membrane theory. The problem is bidimensional, and it presents singularity points on the supports if analyzed through traditional method. For this reason, a “mixed” solution is used, in order to solve this singularity. This approach exploits the imposition of an equilibrium condition. Many of these solutions are characterized by a very fast and effective convergence, even using less than 10-20 equations. Using non-uniform meshes it is possible to notice that accurate solutions are obtained even in presence of responses characterized by elevated gradients (cusps, local discontinuities). Elastic problems, whose analytical solution is tricky due to complex boundary conditions, are easily solved using the Finite Difference Method. Finally, the possibility to adopt this method even for nonlinear problems is demonstrated. The aim of the thesis is to show how analytically complex problems are easily solved through approximated procedures that lead to accurate solution. Moreover, it is possible to extend the field of application of the analysis in more complex geometry and boundary condition, but still maintaining an explicit link to the original mechanical formulation. Besides, if a more complicated modelling is requested, the knowledge of the structural behavior can lead to a more conscious use of the Finite Elements Models.
La tesi ha per oggetto l’analisi di sistemi continui e di problemi diffusivi ricondotti ad equazioni differenziali ordinarie e la loro soluzione approssimata mediante Differenze Finite. Il lavoro inizia con un inquadramento del metodo nell’ambito dei Principi Variazionali e dei metodi di soluzione approssimati. Successivamente vengono selezionati i più frequenti tipi di equazione differenziale presenti nell’analisi delle strutture monodimensionali, raggruppandoli in funzione dell’ordine delle derivate di diverso ordine coinvolte. Per ogni equazione è illustrata la varietà di problemi che lo stesso algoritmo può trattare. Per ogni problema sono richiamati gli aspetti teorici, la soluzione analitica, se disponibile, e vengono svolte corrispondenti analisi per Differenze Finite esaminando accuratezza dei risultati e convergenza. I casi di maggior interesse che sono stati trattati sono: - Lo studio del comportamento di aderenza in un prisma acciaio-calcestruzzo soggetto a trazione. Lo stesso problema, facendo riferimento ai legami costitutivi del Tension Chord, viene trattato in campo non lineare come problema di fessurazione progressiva per effetto di un carico crescente. - Lo studio del comportamento di strutture a cassone soggette ad effetti torsionali non uniformi e ad effetti distorsionali. - L’analisi di sistemi collaboranti (un ponte sospeso e un ponte ad arco a volta sottile) in presenza di non linearità geometriche. - Lo studio del comportamento tenso-flessionale di sistemi lineari deformabili (funi, ribbon bridges, tunnels sottomarini) nel tratto di approccio ad ancoraggi rigidi. - L’analisi di una struttura a volta (paraboloide ellittico) studiata con l’equazione differenziale derivata dalla cosiddetta “Teoria delle Ombre”. La teoria è di tipo membranale. Il problema è bidimensionale e, risolto con soluzioni tradizionali, presenta un punto singolare agli spigoli di appoggio. Si mostra una soluzione “mista”, risolvendo la singolarità con l’imposizione di una condizione di equilibrio. Molte soluzioni sono ottenute, e con un’ottima convergenza, con meno di 10-20 equazioni algebriche. Utilizzando suddivisioni con passo variabile si mostra come si abbiano risultati accurati anche in presenza di risposte con gradienti elevati (cuspidi, discontinuità locali). Problemi elastici di laboriosa soluzione analitica per la presenza di condizione al contorno complesse, sono facilmente sviluppati. Si mostra, infine, come siano possibili estensioni al campo non lineare. In tal modo si vuole mostrare come problemi spesso analiticamente complessi siano facilmente risolti e con soluzioni accurate, consentendo di esplorare tutte le potenzialità di una certa formulazione analitica, ampliando i campi di esplorazione in termini di geometria e condizioni di vincolo e mantenendo un collegamento immediato con la formulazione meccanica originale. Si ritiene infine che, passando a modellazioni più complesse, una conoscenza del comportamento, sia pure tendenziale, di determinate classi di strutture o di particolari costruttivi, aiuti ad una corretta formazione dei modelli ad Elementi Finiti.
Su alcune equazioni ricorrenti dell'analisi strutturale e loro soluzione approssimata
BALZAROTTI, LUCA
2018/2019
Abstract
The thesis deals with the analysis of continuous systems and diffusion problems associated with ordinary differential equations, and their approximated solution obtained through the Finite Difference Method. The introductory chapters discuss the characteristics of the method in the context of the Variational Principles and of the approximated solution procedures. Afterwards, frequently recurrent equations related to one-dimensional structures are selected, grouping them depending on the order of derivatives. The variety of the problems that each equation can describe is showed: the same algorithm can be applied in different contexts. Moreover, for each problem the theoretical aspects and the analytical solution, if available, are presented. The exact solution is compared with the Finite Difference one, in order to verify the accuracy and the convergence of the results. The most interesting cases that have been discussed are: - The steel-concrete bonding behavior in a specimen subjected to traction in a linear elastic regime. The same problem is analyzed in accordance with the constitutive laws of the Tension Chord Model, under the action of an increasing load. - The analysis of box girder bridges under non uniform torsion and distortional effects. - The study of the behavior of coupled structures considering geometrical non linearities: suspended bridges and arch bridges with rigid deck. - The analysis of the behavior of deformable linear systems as, for example, cables, ribbon bridges, underwater tunnels, especially in the portion near to rigid anchorages. - The analysis of a shell structure (elliptic paraboloid), studied exploiting the Shadows Theory, that is a membrane theory. The problem is bidimensional, and it presents singularity points on the supports if analyzed through traditional method. For this reason, a “mixed” solution is used, in order to solve this singularity. This approach exploits the imposition of an equilibrium condition. Many of these solutions are characterized by a very fast and effective convergence, even using less than 10-20 equations. Using non-uniform meshes it is possible to notice that accurate solutions are obtained even in presence of responses characterized by elevated gradients (cusps, local discontinuities). Elastic problems, whose analytical solution is tricky due to complex boundary conditions, are easily solved using the Finite Difference Method. Finally, the possibility to adopt this method even for nonlinear problems is demonstrated. The aim of the thesis is to show how analytically complex problems are easily solved through approximated procedures that lead to accurate solution. Moreover, it is possible to extend the field of application of the analysis in more complex geometry and boundary condition, but still maintaining an explicit link to the original mechanical formulation. Besides, if a more complicated modelling is requested, the knowledge of the structural behavior can lead to a more conscious use of the Finite Elements Models.File | Dimensione | Formato | |
---|---|---|---|
TesiLucaBalzarotti.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
5.68 MB
Formato
Adobe PDF
|
5.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/150889