Patients with Cystic Fibrosis (CF) suffer from a genetic defect that affects the transport of salts through the cellular membrane of the respiratory and gastrointestinal epithelium, among others. The abnormal transport of salts is associated to more viscous dehydrated mucus and absence of periciliary layer (PL) formation, which consequently results in deficient mucociliary clearance - required as defence mechanism against contaminant particles. In a healthy individual, the contaminant particles are trapped within the mucus layer of the airway epithelium and then transported through the action of ciliary beating present in PL until the oropharynx where this is digested. In CF patients, the cilia are not able to shift the particles or the bacteria due to the lack of PL and due to the increment of both thickness and viscosity of CF mucus that does not allow its flow.CF patients are susceptible to bacterial infections, as P. aeruginosa, that find a favourable environment to survive and form colonies. The immune system fails to eradicate infections because there are different bacteria strains infecting the CF airways, which upon successive antibiotic treatments become resistant. The respiratory tissue is gradually damaged due to continuous immunological exposure, which leads to pulmonary deficiency and, ultimately, lung death. The use of an antibiotic over another on a patient, depends on patient’s age, disease state, established bacterial colonies and number, and characteristics of patient’ mucus (whose properties vary from patient-to-patient). To combat infections, many antibiotics are administered in combination, as ciprofloxacin or tobramycin, yet their inefficiency to combat bacterial infections is associated to ulterior resistance. Due to bacteria resistance, to find a unique treatment to combat CF patients’ infections is very difficult and becomes even more difficult when the variability among patients is considered. Current mucus models do not address the complex microenvironment of CF mucus, which mainly rely in mucin-based solutions, mucin-based gels, or cell-based models. Mucin-based solutions do not exhibit the three-dimensionality of CF mucus, mucin-based gels include artificial components that are not present in CF mucus, while cell-based models are not able to produce in vitro thick mucus with abnormal properties as those observed among CF patients. These in vitro models do not give a truthful insight over drug diffusion, since they do not exhibit the 3D barrier conferred by CF mucus through which drugs diffuse or their artificial components might interact with drugs, and therefore give inaccurate results. Herein, an airway mucus model of the CF mucus was successfully developed and further studied with the aid of computational models to get further insights over its microstructure, as well as to visualize the diffusion profiles of different antibiotic drugs. The engineered mucus model is a 3D model mainly constituted by alginate (Alg), which is present in CF mucus due to its production by P. aeruginosa, and by mucin that is the main glycoprotein present in CF mucus. Alg-based hydrogels were produced by taking advantage of its external crosslinking with Ca2+ ions (calcium gluconate, CaGlu) using a custom-tailored diffusion bicompartimentalized system. The viscoelastic properties of CF mucus are the main parameter hampering drug diffusion, therefore the viscoelastic properties of Alg-based hydrogels were engineered by controlling the extent of crosslinking until attaining compared properties to those reported for CF sputum. The viscoelastic properties are also very important, since this also limit ciliary beating and therefore block mucociliary clearance mechanisms. Upon optimization of viscoelastic properties, mucin was added to the composition of the mucus models aiming to model the chemical composition of CF mucus. Mucus models composed by 8% (w/v) Alg, 0.17% (w/v) Ca2+ ions, 16.33 mg/ml NaCl and 25 mg/ml mucin (Mucin/Alg-based hydrogels), exhibit similar viscoelastic properties to those reported for CF sputum. The storage modulus of Mucin/Alg-based hydrogels varies between 40 and 55 Pa, while that of CF sputum varies between 5 and 8 Pa. The loss modulus, in its turn, varies from 4 to 13 Pa, while that of CF sputum ranges from 2 to 5 Pa. Despite the detected differences on both G’ and G’’ between the engineered mucus models and CF sputum, these are not significant. Additionally, the obtained complex viscosity varies from 9 to 0.77 Pa.s accordingly to the analysed frequency (0.5 and 10 Hz, respectively), similarly to those reported for CF sputum (13 to 0.63 Pa.s). The results obtained from the rheological analysis were further fitted within the Generalized Maxwell Model (GMM) to get more information over the mesh size of Mucin/Alg-based hydrogels, and consequently their microstructure. The GMM allows to estimate G, which when coupled to the pure elastic rubber theory allows to estimate the mesh sizes of Mucin/Alg-based hydrogels. Comparable values of mesh size were estimated using both MS Excel and Matlab assuming a front factor ѱ equal to 1 or 14 (1 assuming an ideal rubber, 14 previously determined for saturated Alg hydrogels using low-field nuclear magnetic resonance): approximately, 54.2 and 130.57 nm with ѱ equal to 1 or 14, respectively. With ѱ = 14 the obtained values are within the range of mesh size values reported for CF mucus (100-400 nm). Drug diffusion was also performed by testing four different antibiotic drugs that are commonly administered to CF patients to control infections. Briefly, the different drugs were deposited on top of Mucin/Alg-based hydrogels and left to diffuse up to 4 h. At different time points, the percentage of drug diffusion through Mucin/Alg-based hydrogels was evaluated by UV/Vis spectrophotometry. All used drugs diffused faster across Alg-based hydrogels than through Mucin/Alg-based hydrogels, hinting that some mucin-drug interactions might have occurred. Subsequently, drug diffusion through Mucin/Alg-based hydrogels was evaluated by developing two mathematical models that permit the visualization of the diffusion profile of each drug in time across the mucus models. Both developed mathematical models rely on the equation of mass transport and take into consideration the diffusion of drug in one direction (no convection and reaction). For the development of the mathematical models, one initial condition and two boundary conditions (BCs) have been assumed. The experimentally obtained diffusion profile was used as BC for the development of the mathematical models, since this varies from drug to drug. The second BC assumes that drug concentration decreases exponentially as a function of time that explains the decrement of the initial concentration from the top of Mucin/Alg-based hydrogels. Finally, the initial condition takes into consideration that the entire quantity of drug, at initial time, is concentrated on the top layers of Mucin/Alg-based hydrogels (x ꞊0; t=0; C=Cmax), so within the thickness of the hydrogel the quantity of drug is equal to zero. By imposing the two BCs and the initial condition, an analytical model of the diffusion profile has been developed by applying the method of the separable variables. To validate the analytical model, the diffusion profiles have been also estimated by exploiting the solver pdepe of Matlab (numerical model), while imposing the same BCs and initial condition used on the analytical model. For both mathematical models, it was necessary to calculate the diffusion coefficient, which take into consideration the internal structure of the hydrogel, but not the interactions that might occur between drugs and the components of the hydrogel: 30701 μm²/min for ceftazidime, 28313 μm²/min for tobramycin, 26983 μm²/min for cephalexin, and 32590 μm²/min for ciprofloxacin. Once the diffusion coefficients were determined, the two mathematical models estimated comparable diffusion profiles. The obtained diffusion profile and diffusion coefficient of the tested drugs, suggest that all drugs interact with mucin: ciprofloxacin and ceftazidime have greater interaction in respect to tobramycin and cephalexin that diffuse faster through Mucin/Alg-based hydrogels. The diffusion profiles are not in agreement with the calculated diffusion coefficients, because these do not take in consideration possible mucin-drugs or Alg-drugs interactions. The presence of bacteria, patient’ age and diet, and O2 and nutrients flow are the main factors influencing the environmental conditions of CF mucus. Both in vitro static models with and without cells are only able to reproduce some parameters of the disease. The designed diffusion bicompartimentalized system allow bacterial growth, O2 gradients, and nutrients within the mucus model under static conditions. Yet, CF microenvironment conditions are dynamic. CF mucus resists air flow and mucociliary clearance mechanisms along the airways. Aerosolized drugs, O2 and bacteria also reach CF mucus from the air flow present in the airways, nutrients are provided by blood flow below the epithelial cells that are under the CF mucus. Drugs, administered to combat bacterial infections, are subject to both convection and diffusion. In in vitro static models, air and aerosolized drug flows are not reproduced. In this Thesis, the engineered mucus model was coupled to a bicompartimentalized bioreactor to simulate the dynamic CF environment. The bioreactor is constituted by a bottom chamber in which the crosslink solution is inserted, while on the surface of the top chamber a filter is fixed on which mucus model can be directly produced. The top chamber overlies the bottom chamber and permits the instant visualization of the dynamic conditions, to which Alg-based hydrogels are submitted, by the aid of a microscope. Medium flow within the bicompartimentalized bioreactor was set at 0.7 mL/min, which stimulated Alg-based hydrogels. After 4 h of flow, the hydrogel has disappeared, probably due to high shear forces caused by flow. In the future, a smaller chamber with a stronger support should be designed to ensure stability of the hydrogels for longer periods. Additionally, smaller flows would also better reproduce the CF environment. The engineered mucus model of CF mucus, herein proposed, not only offers a structural barrier to drug diffusion, but also exhibits the ability to interact with mucin within a three-dimensional structure, phenomenon that has been previously shown in solution and clinically. The engineered mucus model presents many advantages is relation to current proposed mucus models, including similar chemical composition (all the components of the mucus model are also present in CF mucus and were used at a concentration similar to the pathological condition, and therefore more accurate results on drug interaction can be taken), final viscoelastic properties are similar to those reported for CF sputum, presence of gradient (that is also exhibited by CF mucus), easy-to-produce/use platform (the mucus models are easily produced without requiring further training), and versatility (other molecules present on CF mucus can be easily included without requiring any additional step, and their effect over both viscoelastic properties and drug diffusion can be studied either when the molecules are included singularly or in combination). The developed mathematical models, for both the determination of the mesh size of the engineered mucus model and drug diffusion, are flexible programs that can be applied to other hydrogel-like structures, and to visualize the diffusion profile of different drugs across different hydrogels.
I malati di Fibrosi Cistica (CF) soffrono di un difetto genetico che influenza il trasporto di sali tra la membrana cellulare dell’epitelio respiratorio, gastrointestinale. L’inusuale trasporto di sali rende il muco epiteliale più viscoso e inibisce la formazione del liquido periciliare (PL) che causa il malfunzionamento del meccanismo di clearance muco-ciliare che è la difesa naturale contro le particelle contaminanti. In un individuo sano, tali particelle vengono prima intrappolate nello strato di muco dell’epitelio delle vie aeree e poi trasportate grazie al battito delle ciglia presenti in PL fino all’orofaringe dove vengono digerite. Nei malati di CF, le ciglia non sono in grado di spostare le particelle o i batteri a causa della mancanza di PL e dell’aumento dello spessore e della viscosità del muco che non scorre più fluentemente. I malati di CF sono soggetti ad attacchi batterici, come dallo P. aeruginosa, che trovano un ambiente favorevole in cui sopravvivere e formare colonie. Il tentativo del sistema immunitario di sradicare l’infezione fallisce sia perché i batteri che infettano le vie respiratorie sono in grande quantità, sia perché questi sono incorporati nel muco e fanno resistenza. Il tessuto respiratorio gradualmente si danneggia a causa della continua esposizione immunologica, portando con il tempo alla deficienza polmonare e alla morte. L’uso di un antibiotico rispetto a un altro su un paziente dipende dall’età del paziente, dallo sviluppo e dal numero di colonie batteriche, dalle caratteristiche specifiche dello sputo del paziente (variano da paziente a paziente). Per combattere le infezioni, molti antibiotici sono somministrati in combinazione, come la ciprofloxacina o la tobramicina, eppure risultano essere inefficaci a causa della resistenza dei batteri. A causa di quest’ultima, è difficile trovare un’unica cura per l’infezione, il tutto diventa ancora più difficile quando si aggiunge la variabilità tra i pazienti. I modelli di muco correnti, principalmente le soluzioni a base di mucina, i gel a basi di mucina e modelli con cellule, non mirano a mimare l’ambiente complesso di CF. Le soluzioni a basi di mucina non esibiscono la tridimensionalità del CF sputo, i gel a base di mucina includono componenti artificiali che non sono presenti nel CF muco, mentre i modelli con cellule non sono in grado di produrre un muco spesso e il muco prodotto ha proprietà differenti rispetto a quelle osservate nei pazienti malati. Questi modelli in vitro non danno una visione reale della diffusione dei farmaci dal momento che non presentano la barriera che i farmaci devono attraversare, in più i componenti dei modelli potrebbero interagire con i farmaci rendendo falsi i risultati. Quindi, un modello di muco del CF muco è stato prodotto con successo con l’aiuto di modelli computazionali è stato possibile valutare la microstruttura del modello di muco e la diffusione di farmaci all’interno di esso. Il modello di muco ottenuto è un modello tridimensionale costituito principalmente da alginato (Alg), che in CF sputo è secreto da P. aeruginosa, e da mucina che è la principale glicoproteina presente nel CF muco. Gli idrogeli di Alg sono stati prodotti dalla reticolazione delle catene di Alg con gli ioni Ca2+ (gluconato di calcio, CaGlu) usando un sistema di diffusione bicompartimentalizzato. Le proprietà viscoelastiche del CF muco sono il principale parametro che ostacola la diffusione del farmaco, quindi le proprietà viscoelastiche degli idrogeli di Alg sono state ottenute controllando il processo di reticolazione fino a ottenere quelle del CF sputo. Le proprietà viscoelastiche sono anche molto importanti perché possono limitare il battito ciliare bloccando il sistema di difesa umano contro i batteri. Per ottimizzare le proprietà viscoelastiche, è stata aggiunta la mucina nel modello di muco in modo da mimare la composizione chimica del CF muco. I modelli di muco composti da 8% (w/v) Alg, 0.17% (w/v) Ca2+, 16.33 mg/ml NaCl e 25 mg/mL mucina, esibiscono proprietà viscoelastiche simili a quelle del CF sputo. Il modulo conservativo (G’) varia tra 40 e 55 Pa, mentre quello del CF sputo varia tra 5 e 8 Pa nell’intervallo di frequenze tra 0.1-10 Hz. Il modulo dissipativo (G’’) varia tra 4 e 13 Pa contro quello del CF sputo che varia tra 5 e 8 Pa valutati nello stesso intervallo di G’. Nonostante le differenze tra G’ e G’’ tra i due modelli di muco (Mucina e Alg) e il CF sputo siano state rilevate, non sono significative. In più, la viscosità complessa varia da 9 a 0.77 Pa.s a 0.5 e 10 Hz rispettivamente con valori simili a quelli riscontrati nel CF sputo (13 e 0.63 Pa.s) nelle stesse due frequenze. I risultati ottenuti con l’analisi reologica sono stati poi fittati con il Modello Generalizzato di Maxwell (GMM) che dà più informazioni sulle mesh size del modello di muco prodotto, e quindi sulla sua microstruttura. Il GMM stima il modulo di sforzo, G, che accoppiato alla teoria della gomma puramente elastica, permette di ottenere le mesh sizes dell’idrogelo. Valori comparabili di mesh size sono stati stimati usando sia MS Excel sia Matlab con front factor ѱ, uguale a 1 o 14 (1 se si assume un modello di gomma ideale, 14 precedentemente determinato dalla risonanza magnetica nucleare a basso campo): circa 54.2 nm e 130.57 nm con ѱ uguale a 1 or 14 rispettivamente. Con ѱ= 14, i valori ottenuti sono nell’intervallo dei valori di mesh size riportati per il CF muco (100-400 nm).Successivamente la diffusione di farmaci è stata eseguita usando quattro differenti antibiotici che sono comunemente somministrati ai pazienti con CF per controllare l’infezione. Brevemente, i differenti farmaci sono stati depositati sugli idrogeli prodotti e lasciati diffondere per 4 ore. A differenti time points, la percentuale di concentrazione sul fondo dell’idrogelo è stata valutata usando UV/Vis spettrofotometria. Tutti i farmaci usati diffondono più velocemente attraverso gli idrogeli di Alg rispetto a quelli di Mucina, suggerendo che tutti i farmaci interagiscono con la mucina. Dopodiché, la diffusione di farmaci è stata valutata nel modello di muco grazie allo sviluppo di due modelli matematici che permettono la visualizzazione del profilo di diffusione del farmaco nel tempo. I modelli utilizzati si basano sull’equazione del trasporto di massa e tengono inconsiderazione solo la diffusione (no convezione e reazione) del farmaco in una sola direzione. Per poter sviluppare i modelli, sono state determinate due condizioni al contorno (BCs). Il profilo di concentrazione finale ottenuto sperimentalmente risultante è stato usato come condizione al contorno per lo sviluppo dei modelli matematici tendendo conto che varia da farmaco a farmaco perché la diffusione è caratteristica di ciascun farmaco. La seconda è la funzione esponenziale decrescente nel tempo come funzione che spiega il decremento di concentrazione iniziale nel tempo dalla superficie del modello di muco. Infine, la condizione iniziale è rappresentata dall’intera quantità di farmaco all’instante iniziale concentrata sulla superficie degli idrogeli di Mucina (x ꞊ Cmax); nello spessore del modello di muco la quantità di farmaco è nulla. Imponendo le due BCs e la condizione iniziale, è stato sviluppato un modello analitico di diffusione del farmaco grazie al metodo delle separazioni delle variabili. Per validare modello analitico, i profili di diffusione sono stati calcolati anche utilizzando il solver pdepe di Matlab (modello numerico) imponendo le stesse BCs e condizione iniziale del modello analitico. In entrambi i modelli matematici è stato determinato il coefficiente di diffusione tiene inconsiderazione la struttura interna dell’idrogelo, ma non le possibili interazioni tra farmaci e idrogelo: 30701 μm²/min per la ceftazidima, 28313 μm²/min per la tobramicina, 26983 μm²/min per la cefalexina e 32590 μm²/min per la ciprofloxacina. Una volta inseriti i coefficienti di diffusione, i due modelli matematici di valutazione del profilo di diffusione stimano comparabili profili di diffusione. Confrontando i profili di concentrazione finale, i coefficienti di diffusione e i profili di diffusione dei farmaci, è stato notato che tutti i farmaci interagiscono con la mucina: la ciprofloxacina e la ceftazidima hanno maggiore interazione rispetto alla tobramicina e la cefalexina che quindi diffondono più velocemente nel modello di muco rispetto alle prime due. I profili di diffusione non combaciano con i coefficienti di diffusione calcolati perché questi non tengono conto delle possibili interazioni tra mucina-farmaco. La presenza di batteri, l’età del paziente e la sua dieta, il flusso di nutrienti e di O2 rappresentano i principali fattori che influenzano le condizioni ambientali del CF muco. Il sistema di diffusione bicompartimentalizzato permette la crescita batterica, i gradienti di O2, i nutrienti nel modello di muco sotto condizioni statiche. Al contrario, però le condizioni microambientali di CF sono dinamiche. Il CF muco resiste al flusso d’aria e al meccanismo di clearance mucociliare nelle vie aere. I farmaci aerosolizzati, O2 e i batteri raggiungono il CF muco attraverso il flusso d’aria presente nelle vie aeree, i nutrienti sono forniti dal flusso sanguigno che scorre sotto le cellule epiteliali sovrastate dal CF muco. I farmaci, somministrati a combattere le infezioni batteriche, sono soggetti a diffusione e convezione. Nei modelli in vitro statici, i flussi di aria e di farmaci non vengono riprodotto. In questa Tesi, il modello di muco prodotto è stato accoppiato a un sistema bicompartimentalizzato per simulare l’ambiente dinamico di CF. Il bioreattore è costituito da una camera inferiore in cui viene inserita la soluzione di crosslink. Sulla superficie della camera viene fissato un filtro su cui viene depositata la soluzione di alginato che viene poi reticolata. La camera superiore si sovrappone alla camera inferiore e permette la visualizzazione istantanea della condizione dinamica a cui viene sottoposto l’idrogelo basato sull’Alg. Il flusso di medium simulato nel bioreattore avviene sopra il modello di muco e è stato posto essere uguale a 0.7 mL/min. Dopo 4 ore di flusso, l’idrogelo è scomparso probabilmente a causa di un valore troppo elevato di flusso e quindi elevato sforzo di taglio. In futuro, una più piccola camera con un supporto più forte dovrebbe essere progettata per assicurarsi la stabilità degli idrogeli per tempi lunghi. In più flussi più bassi meglio riprodurrebbero l’ambiente di CF. Il modello di muco di CF muco qui proposto, non solo offre una barriera alla diffusione di farmaci, ma è anche in grado di interagire con la mucina all’interno della struttura 3D, come stato precedentemente mostrato in soluzione e clinicamente. È caratterizzato da simile composizione chimica (tutti i componenti sono presenti nel CF muco e quindi i risultati ottenuti sulle interazioni dei farmaci sono più accurati), simili proprietà viscoelastiche riportate per il CF sputo. Inoltre presenta gradiente (presenti nel CF muco), è una piattaforma facile sia per la produzione sia per l’uso (i modelli di muco sono facilmente prodotti senza richiedere ulteriore formazione e è versatile (altre molecole presenti sul CF muco possono essere facilmente inclusi senza richiedere molti addizionali passaggi e il loro effetto sulle proprietà viscoelastiche e sulla diffusione di farmaci possono essere spiegati sia quando le molecole sono incluse singolarmente sia in combinazione). I modelli matematici sviluppati, sia per la determinazione delle mesh size of modello di muco prodotto sia per la diffusione di farmaci, sono programmi flessibili che possono essere applicati ad altre strutture simili a idrogeli, e a visualizzare il profilo di diffusione di differenti farmaci attraverso differenti idrogeli.
Engineering mucus models : from microstructure to drug diffusion analysis
VILLA, GIULIA
2016/2017
Abstract
Patients with Cystic Fibrosis (CF) suffer from a genetic defect that affects the transport of salts through the cellular membrane of the respiratory and gastrointestinal epithelium, among others. The abnormal transport of salts is associated to more viscous dehydrated mucus and absence of periciliary layer (PL) formation, which consequently results in deficient mucociliary clearance - required as defence mechanism against contaminant particles. In a healthy individual, the contaminant particles are trapped within the mucus layer of the airway epithelium and then transported through the action of ciliary beating present in PL until the oropharynx where this is digested. In CF patients, the cilia are not able to shift the particles or the bacteria due to the lack of PL and due to the increment of both thickness and viscosity of CF mucus that does not allow its flow.CF patients are susceptible to bacterial infections, as P. aeruginosa, that find a favourable environment to survive and form colonies. The immune system fails to eradicate infections because there are different bacteria strains infecting the CF airways, which upon successive antibiotic treatments become resistant. The respiratory tissue is gradually damaged due to continuous immunological exposure, which leads to pulmonary deficiency and, ultimately, lung death. The use of an antibiotic over another on a patient, depends on patient’s age, disease state, established bacterial colonies and number, and characteristics of patient’ mucus (whose properties vary from patient-to-patient). To combat infections, many antibiotics are administered in combination, as ciprofloxacin or tobramycin, yet their inefficiency to combat bacterial infections is associated to ulterior resistance. Due to bacteria resistance, to find a unique treatment to combat CF patients’ infections is very difficult and becomes even more difficult when the variability among patients is considered. Current mucus models do not address the complex microenvironment of CF mucus, which mainly rely in mucin-based solutions, mucin-based gels, or cell-based models. Mucin-based solutions do not exhibit the three-dimensionality of CF mucus, mucin-based gels include artificial components that are not present in CF mucus, while cell-based models are not able to produce in vitro thick mucus with abnormal properties as those observed among CF patients. These in vitro models do not give a truthful insight over drug diffusion, since they do not exhibit the 3D barrier conferred by CF mucus through which drugs diffuse or their artificial components might interact with drugs, and therefore give inaccurate results. Herein, an airway mucus model of the CF mucus was successfully developed and further studied with the aid of computational models to get further insights over its microstructure, as well as to visualize the diffusion profiles of different antibiotic drugs. The engineered mucus model is a 3D model mainly constituted by alginate (Alg), which is present in CF mucus due to its production by P. aeruginosa, and by mucin that is the main glycoprotein present in CF mucus. Alg-based hydrogels were produced by taking advantage of its external crosslinking with Ca2+ ions (calcium gluconate, CaGlu) using a custom-tailored diffusion bicompartimentalized system. The viscoelastic properties of CF mucus are the main parameter hampering drug diffusion, therefore the viscoelastic properties of Alg-based hydrogels were engineered by controlling the extent of crosslinking until attaining compared properties to those reported for CF sputum. The viscoelastic properties are also very important, since this also limit ciliary beating and therefore block mucociliary clearance mechanisms. Upon optimization of viscoelastic properties, mucin was added to the composition of the mucus models aiming to model the chemical composition of CF mucus. Mucus models composed by 8% (w/v) Alg, 0.17% (w/v) Ca2+ ions, 16.33 mg/ml NaCl and 25 mg/ml mucin (Mucin/Alg-based hydrogels), exhibit similar viscoelastic properties to those reported for CF sputum. The storage modulus of Mucin/Alg-based hydrogels varies between 40 and 55 Pa, while that of CF sputum varies between 5 and 8 Pa. The loss modulus, in its turn, varies from 4 to 13 Pa, while that of CF sputum ranges from 2 to 5 Pa. Despite the detected differences on both G’ and G’’ between the engineered mucus models and CF sputum, these are not significant. Additionally, the obtained complex viscosity varies from 9 to 0.77 Pa.s accordingly to the analysed frequency (0.5 and 10 Hz, respectively), similarly to those reported for CF sputum (13 to 0.63 Pa.s). The results obtained from the rheological analysis were further fitted within the Generalized Maxwell Model (GMM) to get more information over the mesh size of Mucin/Alg-based hydrogels, and consequently their microstructure. The GMM allows to estimate G, which when coupled to the pure elastic rubber theory allows to estimate the mesh sizes of Mucin/Alg-based hydrogels. Comparable values of mesh size were estimated using both MS Excel and Matlab assuming a front factor ѱ equal to 1 or 14 (1 assuming an ideal rubber, 14 previously determined for saturated Alg hydrogels using low-field nuclear magnetic resonance): approximately, 54.2 and 130.57 nm with ѱ equal to 1 or 14, respectively. With ѱ = 14 the obtained values are within the range of mesh size values reported for CF mucus (100-400 nm). Drug diffusion was also performed by testing four different antibiotic drugs that are commonly administered to CF patients to control infections. Briefly, the different drugs were deposited on top of Mucin/Alg-based hydrogels and left to diffuse up to 4 h. At different time points, the percentage of drug diffusion through Mucin/Alg-based hydrogels was evaluated by UV/Vis spectrophotometry. All used drugs diffused faster across Alg-based hydrogels than through Mucin/Alg-based hydrogels, hinting that some mucin-drug interactions might have occurred. Subsequently, drug diffusion through Mucin/Alg-based hydrogels was evaluated by developing two mathematical models that permit the visualization of the diffusion profile of each drug in time across the mucus models. Both developed mathematical models rely on the equation of mass transport and take into consideration the diffusion of drug in one direction (no convection and reaction). For the development of the mathematical models, one initial condition and two boundary conditions (BCs) have been assumed. The experimentally obtained diffusion profile was used as BC for the development of the mathematical models, since this varies from drug to drug. The second BC assumes that drug concentration decreases exponentially as a function of time that explains the decrement of the initial concentration from the top of Mucin/Alg-based hydrogels. Finally, the initial condition takes into consideration that the entire quantity of drug, at initial time, is concentrated on the top layers of Mucin/Alg-based hydrogels (x ꞊0; t=0; C=Cmax), so within the thickness of the hydrogel the quantity of drug is equal to zero. By imposing the two BCs and the initial condition, an analytical model of the diffusion profile has been developed by applying the method of the separable variables. To validate the analytical model, the diffusion profiles have been also estimated by exploiting the solver pdepe of Matlab (numerical model), while imposing the same BCs and initial condition used on the analytical model. For both mathematical models, it was necessary to calculate the diffusion coefficient, which take into consideration the internal structure of the hydrogel, but not the interactions that might occur between drugs and the components of the hydrogel: 30701 μm²/min for ceftazidime, 28313 μm²/min for tobramycin, 26983 μm²/min for cephalexin, and 32590 μm²/min for ciprofloxacin. Once the diffusion coefficients were determined, the two mathematical models estimated comparable diffusion profiles. The obtained diffusion profile and diffusion coefficient of the tested drugs, suggest that all drugs interact with mucin: ciprofloxacin and ceftazidime have greater interaction in respect to tobramycin and cephalexin that diffuse faster through Mucin/Alg-based hydrogels. The diffusion profiles are not in agreement with the calculated diffusion coefficients, because these do not take in consideration possible mucin-drugs or Alg-drugs interactions. The presence of bacteria, patient’ age and diet, and O2 and nutrients flow are the main factors influencing the environmental conditions of CF mucus. Both in vitro static models with and without cells are only able to reproduce some parameters of the disease. The designed diffusion bicompartimentalized system allow bacterial growth, O2 gradients, and nutrients within the mucus model under static conditions. Yet, CF microenvironment conditions are dynamic. CF mucus resists air flow and mucociliary clearance mechanisms along the airways. Aerosolized drugs, O2 and bacteria also reach CF mucus from the air flow present in the airways, nutrients are provided by blood flow below the epithelial cells that are under the CF mucus. Drugs, administered to combat bacterial infections, are subject to both convection and diffusion. In in vitro static models, air and aerosolized drug flows are not reproduced. In this Thesis, the engineered mucus model was coupled to a bicompartimentalized bioreactor to simulate the dynamic CF environment. The bioreactor is constituted by a bottom chamber in which the crosslink solution is inserted, while on the surface of the top chamber a filter is fixed on which mucus model can be directly produced. The top chamber overlies the bottom chamber and permits the instant visualization of the dynamic conditions, to which Alg-based hydrogels are submitted, by the aid of a microscope. Medium flow within the bicompartimentalized bioreactor was set at 0.7 mL/min, which stimulated Alg-based hydrogels. After 4 h of flow, the hydrogel has disappeared, probably due to high shear forces caused by flow. In the future, a smaller chamber with a stronger support should be designed to ensure stability of the hydrogels for longer periods. Additionally, smaller flows would also better reproduce the CF environment. The engineered mucus model of CF mucus, herein proposed, not only offers a structural barrier to drug diffusion, but also exhibits the ability to interact with mucin within a three-dimensional structure, phenomenon that has been previously shown in solution and clinically. The engineered mucus model presents many advantages is relation to current proposed mucus models, including similar chemical composition (all the components of the mucus model are also present in CF mucus and were used at a concentration similar to the pathological condition, and therefore more accurate results on drug interaction can be taken), final viscoelastic properties are similar to those reported for CF sputum, presence of gradient (that is also exhibited by CF mucus), easy-to-produce/use platform (the mucus models are easily produced without requiring further training), and versatility (other molecules present on CF mucus can be easily included without requiring any additional step, and their effect over both viscoelastic properties and drug diffusion can be studied either when the molecules are included singularly or in combination). The developed mathematical models, for both the determination of the mesh size of the engineered mucus model and drug diffusion, are flexible programs that can be applied to other hydrogel-like structures, and to visualize the diffusion profile of different drugs across different hydrogels.File | Dimensione | Formato | |
---|---|---|---|
Tesi.pdf
non accessibile
Descrizione: Engineering Mucus Models: from Microstructure to Drug Diffusion Analysis
Dimensione
5.09 MB
Formato
Adobe PDF
|
5.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/150982