Respiratory rate is one of the physiological parameters whose monitoring is essential to determine a health status of individual. In the clinical field, its measurement is helpful to diagnostics because it is predictive of pathologies and disorders of the respiratory, nervous, cardiac and muscular systems. The need for non-invasive monitoring tools that allow long-term surveys of this parameter is evident, especially in pathological subjects, such as patients with Muscular Dystrophy, who are characterized by progressive muscle degeneration that gradually affects the respiratory muscles, causing respiratory problems and leading to total collapse cardio-respiratory, which is the leading cause of death in these patients. However, there is currently no device/method suitable for accurate long-term monitoring of respiratory rate that is well tolerated by the patient, both in the clinic and at home, and that does not interfere with normal daily activities. The progress in sensor manufacturing technologies, in their power supply, in wireless communication and in health assessment techniques have allowed the creation of wearable devices, which without restricting the subject's movements, offer discreet and precise monitoring. In the field of respiration monitoring, an interesting approach has recently emerged, based on the measurement of thorax and/or abdomen movements due to respiratory activity, through the use of inertial sensors. In particular, a recent study has proposed a system consisting of two peripheral units, which are positioned on the abdomen and thorax, and a central reference unit, which is placed so as not to be subjected to respiratory movements, which is able to receive data from the other two units, save them on an SD card and communicate via Bluetooth with a smartphone/tablet/PC. In each unit there is an IMU sensor, a microcontroller, which implements a "sensor fusion" algorithm in order to obtain the quaternion components relative to the sensor orientation, and a BLE module. As the data processing algorithm from which the respiratory parameters are derived, the Principal Component Analysis approach is used in order to merge the four quaternion components into one component that provides most of the information related to respiration. In the first part of this thesis work, the validation of the device and the algorithm implemented on a clinical population is presented, consisting of 15 subjects suffering from Muscular Dystrophy (13 Muscular Dystrophy and Duchenne, 2 Limb-Girdle Muscular Dystrophy - type 2). Furthermore, a modified data analysis algorithm is proposed, which aims to reduce the need for operator intervention and the processing times of data acquired by the system. In the second part of this thesis the implementation of a new prototype version of the device is presented, in which the wireless communication protocol between the three units of the system is modified so that the system works as a continuous data acquisition platform, which was not possible in the previously implemented version of the system. In particular, in the new version that is presented, the wireless technology that is used is the ANT, whose chosen network topology is the Shared Channel. In this prototype the three units consist of an IMU sensor, an nRF52832 and a battery, and communicate with a dongle connected to the PC.
La frequenza respiratoria è uno dei parametri fisiologici il cui monitoraggio è fondamentale per determinare lo stato di salute di un individuo. In ambito clinico la sua misurazione è di aiuto alla diagnostica perchè predittiva di patologie e scompensi del sistema respiratorio, nervoso, cardiaco e muscolare. È dunque evidente la necessità di strumenti di monitoraggio non invasivi che permettano rilevazioni su lunghi periodi di tale parametro, specialmente in soggetti patologici, come i pazienti affetti da Distrofia Muscolare, che sono caratterizzati da una progressiva degenerazione muscolare che interessa gradualmente anche i muscoli respiratori, provocando problematiche respiratorie e portando fino al totale collasso cardio-respiratorio, che è la principale causa di morte in questi pazienti. Tuttavia, attualmente non esiste un dispositivo/metodo adatto ad un monitoraggio accurato a lungo termine della frequenza respiratoria che sia ben tollerato dal paziente, sia in clinica sia a casa, e che non interferisca con le normali attività quotidiane. Il progresso nelle tecnologie di fabbricazione dei sensori, nella loro alimentazione, nella comunicazione wireless e nelle tecniche della valutazione dello stato di salute hanno permesso la realizzazione di dispositivi wearable, che senza limitare i movimenti del soggetto, offrono un monitoraggio discreto e preciso. Nell’ambito del monitoraggio della respirazione, recentemente, è emerso un interessante approccio, basato sulla misurazione dei movimenti del torace e/o dell’addome dovuto all’attività respiratoria, attraverso l’utilizzo di sensori inerziali. In particolare, un recente studio ha proposto un sistema costituito da due unità periferiche, che sono posizionate sull’addome e sul torace, e un’unità centrale di riferimento, che è posta in modo tale da non essere soggetta a movimenti respiratori, che è in grado di ricevere i dati dalle altre due unità, salvarli su una scheda SD e comunicare via Bluetooth con uno smartphone/tablet/PC. In ogni unità sono presenti un sensore IMU (un accelerometro a 3 assi, un giroscopio a 3 assi, un magnetometro a 3 assi), un microcontrollore, che implementa un algoritmo di “sensor fusion” in modo da ottenere le componenti del quaternione relativo all’orientazione del sensore, e un modulo BLE. Come algoritmo di processing dei dati da cui derivare i parametri respiratori viene utilizzato l’approccio dell’Analisi delle Componenti Principali al fine di fondere le quattro componenti del quaternione in una sola componente tale da fornire la maggior parte dell’informazione relativa alla respirazione. Nella prima parte di questo lavoro di tesi viene presentata la validazione del dispositivo e dell’algoritmo implementato su una popolazione clinica, costituita da 15 soggetti affetti da Distrofia Muscolare (13 Distrofia Muscolare di Duchenne, 2 Distrofia Muscolare dei Cingoli-tipo 2). Inoltre, viene proposto un algoritmo modificato di analisi dei dati, che si propone di ridurre la necessità di intervento dell’operatore e i tempi di elaborazioni dei dati acquisiti dal sistema. Nella seconda parte di questa tesi viene presentata l’implementazione di una nuova versione prototipo del dispositivo in cui viene modificato il protocollo di comunicazione wireless tra le tre unità del sistema in modo che il sistema lavori come una piattaforma di acquisizione dei dati in maniera continua, cosa che non era possibile nella versione del sistema precedentemente implementato. In particolare, nella nuova versione che viene presentata, la tecnologia wireless che viene utilizzata è l’ANT, la cui topologia di rete scelta è lo Shared Channel. In questo prototipo le tre unità sono costituite da un sensore IMU, un nRF52832 ed una batteria, e comunicano con un dongle connesso al PC.
A wearable device for continuous breathing monitoring in neuromuscular patients : towards an improved wireless communication protocol
NIDO, SANTA AURELIA
2018/2019
Abstract
Respiratory rate is one of the physiological parameters whose monitoring is essential to determine a health status of individual. In the clinical field, its measurement is helpful to diagnostics because it is predictive of pathologies and disorders of the respiratory, nervous, cardiac and muscular systems. The need for non-invasive monitoring tools that allow long-term surveys of this parameter is evident, especially in pathological subjects, such as patients with Muscular Dystrophy, who are characterized by progressive muscle degeneration that gradually affects the respiratory muscles, causing respiratory problems and leading to total collapse cardio-respiratory, which is the leading cause of death in these patients. However, there is currently no device/method suitable for accurate long-term monitoring of respiratory rate that is well tolerated by the patient, both in the clinic and at home, and that does not interfere with normal daily activities. The progress in sensor manufacturing technologies, in their power supply, in wireless communication and in health assessment techniques have allowed the creation of wearable devices, which without restricting the subject's movements, offer discreet and precise monitoring. In the field of respiration monitoring, an interesting approach has recently emerged, based on the measurement of thorax and/or abdomen movements due to respiratory activity, through the use of inertial sensors. In particular, a recent study has proposed a system consisting of two peripheral units, which are positioned on the abdomen and thorax, and a central reference unit, which is placed so as not to be subjected to respiratory movements, which is able to receive data from the other two units, save them on an SD card and communicate via Bluetooth with a smartphone/tablet/PC. In each unit there is an IMU sensor, a microcontroller, which implements a "sensor fusion" algorithm in order to obtain the quaternion components relative to the sensor orientation, and a BLE module. As the data processing algorithm from which the respiratory parameters are derived, the Principal Component Analysis approach is used in order to merge the four quaternion components into one component that provides most of the information related to respiration. In the first part of this thesis work, the validation of the device and the algorithm implemented on a clinical population is presented, consisting of 15 subjects suffering from Muscular Dystrophy (13 Muscular Dystrophy and Duchenne, 2 Limb-Girdle Muscular Dystrophy - type 2). Furthermore, a modified data analysis algorithm is proposed, which aims to reduce the need for operator intervention and the processing times of data acquired by the system. In the second part of this thesis the implementation of a new prototype version of the device is presented, in which the wireless communication protocol between the three units of the system is modified so that the system works as a continuous data acquisition platform, which was not possible in the previously implemented version of the system. In particular, in the new version that is presented, the wireless technology that is used is the ANT, whose chosen network topology is the Shared Channel. In this prototype the three units consist of an IMU sensor, an nRF52832 and a battery, and communicate with a dongle connected to the PC.File | Dimensione | Formato | |
---|---|---|---|
2019_12_Nido.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
18.44 MB
Formato
Adobe PDF
|
18.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/151020