The need to reinforce structures can be caused by the decrease in their load-bearing capacity due to the degradation of the mechanical properties of the materials, deterioration over the years, aggressive environment, seismic vulnerability, exposure to excessive loads and design and/or construction errors. Reinforcement may also be necessary as a result of changes in the use of the structure, which may result in an increase in loads or a change in the static system. The increase in the use of composite materials in the field of construction is due to structural rehabilitation of existing buildings, both reinforced concrete structures and masonry, for the repair of beams, columns, slabs or walls. Composite materials can be made with different types of fabrics (in the cases under examination glass, PBO and carbon), obtained from continuous filaments then grouped in bundles organized unidirectionally or bidirectionally in a fabric. The reinforcement system can be characterized by impregnation of the dry fabric with polymeric matrix (FRP) or cement matrix (FRCM); in particular, the latter with inorganic matrix is preferred due to its high compatibility with the substrates that makes them easy to use. Cementitious matrices also show better resistance to high temperatures and longer life in presence of harmful agents. Regardless of the matrix that characterizes the composite, the mechanism of stress transfer between the composite and the substrate, and between the tissue and the matrix, is influenced by several parameters such as mechanical properties and adhesion, tissue geometry and consistency of the matrix. The realization of regular samples (size and shape), the storage and the way in which the load is applied influence the stress-strain behavior of the material, also considering the fact that they are manual procedures, therefore affected by possible human errors. Experimental tests were conducted in order to analyze the behavior of different fabrics with respect to their impregnation with inorganic matrix, having previously studied the mechanical properties of the bare tissue. Two different technologies have been employed to record the displacement field throughout the test: contact measurements, consisting in the application of extensometer and Linear Variation Differential Transformers "LVDTs" near the specimen surface, and the Digital Image Correlation "DIC" non-contact technique. The samples were tested in four different configurations: • Bare fabrics (glass, PBO and carbon fibers); • Fabric impregnated with organic matrix (glass fiber and matrix in epoxy resin); • Tensile test on FRCM specimens, clamping on the fabric left bare at the two ends outside the composite (glass, PBO and carbon fibers); • Tensile test on FRCM specimens, clamping on the matrix (PBO fibers).
La necessità di rinforzare le strutture può essere causata dalla diminuzione della capacità portante delle stesse dovuta al degrado delle proprietà meccaniche dei materiali, dal deterioramento negli anni, dall’ambiente aggressivo, dalla vulnerabilità sismica, dall'esposizione a carichi eccessivi e da errori di progettazione e/o costruzione. Il rinforzo può anche essere necessario a seguito della modifica d'uso della struttura, che può comportare un aumento dei carichi o una modifica del sistema statico. L’aumento dell’utilizzo dei materiali compositi nel campo delle costruzioni è dovuto alla riabilitazione strutturale di edifici esistenti, trattasi sia di strutture in calcestruzzo armato che in muratura, per la riparazione di travi, colonne, solette o pareti. I materiali compositi possono essere realizzati con diverse tipologie di tessuti (nei casi in esame vetro, PBO e carbonio), ricavati da filati continui poi raggruppati in fasci organizzati unidirezionalmente o bidirezionalmente in un tessuto. Il sistema di rinforzo può essere caratterizzato da impregnazione del tessuto secco con matrice polimerica (FRP) o matrice cementizia (FRCM); in particolare, questi ultimi a matrice inorganica sono preferiti grazie alla loro elevata compatibilità con i substrati che li rende facilmente utilizzabili. Le matrici cementizie mostrano inoltre una migliore resistenza alle alte temperature e maggiore durata in presenza di agenti nocivi. Indipendentemente dalla matrice che caratterizza il composito, il meccanismo di trasferimento delle sollecitazioni tra quest’ultimo e il substrato, e tra il tessuto e la matrice, è influenzato da diversi parametri come le proprietà meccaniche e di adesione, la geometria dei tessuti e la consistenza della matrice. La realizzazione di campioni regolari (dimensioni e forma), lo stoccaggio e la modalità di applicazione del carico influenzano il comportamento sforzo-deformazione del materiale, anche considerando il fatto che sono procedimenti manuali, dunque affetti da possibili errori umani. Sono state condotte prove sperimentali al fine di analizzare il comportamento di differenti tessuti rispetto la loro impregnazione con matrice inorganica, avendo preliminarmente studiato le proprietà meccaniche del tessuto nudo. Durante le prove di trazione sono state utilizzate due diverse tecnologie per registrare il campo degli spostamenti: tecniche a contatto, che consistono nell'applicazione di estensimetri e trasformatori differenziali a variazione lineare "LVDTs" vicino alla superficie del provino, e la tecnica senza contatto Digital Image Correlation "DIC". I campioni sono stati testati in quattro diverse configurazioni: • Tessuto nudo (fibre di vetro, PBO e carbonio); • Tessuto impregnato con matrice organica (fibra di vetro e resina epossidica); • Tessuto impregnato con matrice inorganica – afferraggio su tessuto nudo libero agli estremi (fibre di vetro, PBO e carbonio); • Tessuto impregnato con matrice inorganica – afferraggio su matrice (fibre di PBO).
Experimental methods for the mechanical characterization of fiber-reinforced composites with inorganic matrix
CAGNETTA, FRANCESCA;BELLO, DANIELA
2018/2019
Abstract
The need to reinforce structures can be caused by the decrease in their load-bearing capacity due to the degradation of the mechanical properties of the materials, deterioration over the years, aggressive environment, seismic vulnerability, exposure to excessive loads and design and/or construction errors. Reinforcement may also be necessary as a result of changes in the use of the structure, which may result in an increase in loads or a change in the static system. The increase in the use of composite materials in the field of construction is due to structural rehabilitation of existing buildings, both reinforced concrete structures and masonry, for the repair of beams, columns, slabs or walls. Composite materials can be made with different types of fabrics (in the cases under examination glass, PBO and carbon), obtained from continuous filaments then grouped in bundles organized unidirectionally or bidirectionally in a fabric. The reinforcement system can be characterized by impregnation of the dry fabric with polymeric matrix (FRP) or cement matrix (FRCM); in particular, the latter with inorganic matrix is preferred due to its high compatibility with the substrates that makes them easy to use. Cementitious matrices also show better resistance to high temperatures and longer life in presence of harmful agents. Regardless of the matrix that characterizes the composite, the mechanism of stress transfer between the composite and the substrate, and between the tissue and the matrix, is influenced by several parameters such as mechanical properties and adhesion, tissue geometry and consistency of the matrix. The realization of regular samples (size and shape), the storage and the way in which the load is applied influence the stress-strain behavior of the material, also considering the fact that they are manual procedures, therefore affected by possible human errors. Experimental tests were conducted in order to analyze the behavior of different fabrics with respect to their impregnation with inorganic matrix, having previously studied the mechanical properties of the bare tissue. Two different technologies have been employed to record the displacement field throughout the test: contact measurements, consisting in the application of extensometer and Linear Variation Differential Transformers "LVDTs" near the specimen surface, and the Digital Image Correlation "DIC" non-contact technique. The samples were tested in four different configurations: • Bare fabrics (glass, PBO and carbon fibers); • Fabric impregnated with organic matrix (glass fiber and matrix in epoxy resin); • Tensile test on FRCM specimens, clamping on the fabric left bare at the two ends outside the composite (glass, PBO and carbon fibers); • Tensile test on FRCM specimens, clamping on the matrix (PBO fibers).File | Dimensione | Formato | |
---|---|---|---|
2019_12_Bello_Cagnetta.pdf
non accessibile
Descrizione: Corpo Tesi
Dimensione
20.16 MB
Formato
Adobe PDF
|
20.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/151121