This thesis project is part of a European project regarding liver and bile duct with the aim of developing constructs with metabolic and immunologic functionality that can be used for disease modeling. The future aim of the construct is the application in organ regeneration therapies for liver failure with the advantage of removing the need for immunosuppression. The main purpose of this thesis project is the design and validation of a sensorized bioreactor for the perfusion of an immunocompetent bioengineered 3D liver, in order to allow better and more controlled condition for the dynamic culture to favor cells proliferation and differentiation. The construct is composed by a decellularised mouse liver and patient-derived induced pluripotent Stem Cells (hiPSCs) that needs to differentiate in hepatocyte-like cells. The customized bioreactor has to support the cells survival and to allow the cells proliferation and differentiation by real-time monitoring of the culture parameters (pH and Temperature). Considering that the construct will be recellularised with hiPSCs, the monitoring of pH and Temperature is even more important because of the hiPSCs sensibility to pH changes. The realized bioreactor will be tested in order to ensure hydraulic seal and the maintenance of sterility. Then, recellularisation experiments with hiPSCs will be conducted to validate the system and the differentiation stage reached by the cells will be analysed. As a second project, a bioreactor for the perfusion of a bioengineered 3D bile duct with complete functionality was realized. There are no bioreactors for bile ducts currently used in this research project, the realization of a system able to maintain certain culture condition allowing 3D dynamic culture of engineered bile ducts is an important achievement for the research. Considering the fundamental role of bile duct in liver functionality, this second project was developed in order to produce engineered bile ducts for bile ducts replacement. The construct is composed by an electrospun PCLU tube and Human primary Cholangiocytes cells derived from common bile duct. The customized bioreactor has to support the cells survival and the maintenance of a lumen inside the construct in order to create a complete functional engineered bile duct. The hydraulic seal and the maintenance of sterility will be evaluated for the realized bioreactor. Then, cellularisation experiments with Human primary Cholangiocytes will be conducted. Cell viability will be analysed at the end of the experiments in order to evaluate the system functionality. Both bioreactors realized are able to maintain sterility and to keep the constructs in dynamic culture for several weeks. They are able to isolate the constructs from the external environment providing the correct oxygenation and perfusion.
Questo progetto di tesi si colloca in un Progetto Europeo riguardante il fegato e il dotto biliare, il quale ha lo scopo di sviluppare costrutti metabolicamente e immunologicamente funzionali che possono essere utilizzati come modelli tridimensionali per patologie. L’applicazione ultima di tale progetto è da collocarsi nell’ambito della rigenerazione di organi con il vantaggio della rimozione delle terapie di immunosoppressione. Il principale scopo di questo lavoro di tesi è la progettazione e validazione di un bioreattore sensorizzato per la perfusione controllata di un fegato ingegnerizzato, con lo scopo di fornire condizioni ambientali migliori e più controllate. Il costrutto ingegnerizzato è composto da un fegato di topo decellularizzato e pateint-derived induced pluripotent stem cells (hiPSCs), le quali devono differenziarsi in hepatocyte-like cells. Il bioreattore deve supportare la proliferazione cellulare e il differenziamento mediante il monitoraggio in tempo reale dei parametri di coltura (pH e Temperatura). Considerando che gli scaffold decellularizzati sono seminati con hiPSCs, monitorare pH e Temperatura della coltura diventa ancora più importante a causa dell’estrema sensibilità che hanno le hiPSCs per le variazioni di pH. Il bioreattore realizzato sarà testato per verificare la tenuta idraulica e la sterilità del sistema. Successivamente per la validazione del sistema saranno condotti esperimenti di ricellularizzazione con hiPSCs e sarà valutato lo stato di differenziamento cellulare raggiunto. Come secondo progetto, è stato realizzato un bioreattore per la perfusione di dotti biliari ingegnerizzati con lo scopo di realizzare costrutti completamente funzionali. Attualmente, nel progetto di ricerca, non esistono bioreattori atti a tale scopo, per questo motivo la realizzazione di un bioreattore in grado di mantenere condizioni controllate in coltura dinamica per la realizzazione di dotti biliari ingegnerizzati è un importante successo. Considerando il ruolo fondamentale del dotto biliare nelle funzionalità del fegato, questo secondo progetto si pone l’obiettivo di realizzare dotti biliari ingegnerizzati per applicazioni in ingegneria dei tessuti. I costrutti ingegnerizzati sono costituiti da una struttura tubulare in PCLU realizzata con electrospinning e Human primary Cholangiocytes derivati dal common bile duct. Il bioreattore deve supportare la proliferazione cellulare e mantenere aperto il lumen della struttura per realizzare un dotto biliare completamente funzionale. Le prestazioni del bioreattore realizzato verranno valutate dal punto di vista della tenuta idraulica e del mantenimento della sterilità. Successivamente il funzionamento del sistema sarà validato mediante la semina di Human primary Cholangiocytes e la successiva analisi di vitalità cellulare al termine della coltura dinamica. Entrambi i bioreattori realizzati sono in grado di mantenere gli scaffold in coltura dinamica per diverse settimane mantenendo la completa sterilità del sistema. Sono in grado di isolare i costrutti dall’ambiente esterno fornendo la corretta ossigenazione e perfusione.
Bioreactor systems for whole-organ liver and bile duct engineering
TURCHETTA, CHIARA
2018/2019
Abstract
This thesis project is part of a European project regarding liver and bile duct with the aim of developing constructs with metabolic and immunologic functionality that can be used for disease modeling. The future aim of the construct is the application in organ regeneration therapies for liver failure with the advantage of removing the need for immunosuppression. The main purpose of this thesis project is the design and validation of a sensorized bioreactor for the perfusion of an immunocompetent bioengineered 3D liver, in order to allow better and more controlled condition for the dynamic culture to favor cells proliferation and differentiation. The construct is composed by a decellularised mouse liver and patient-derived induced pluripotent Stem Cells (hiPSCs) that needs to differentiate in hepatocyte-like cells. The customized bioreactor has to support the cells survival and to allow the cells proliferation and differentiation by real-time monitoring of the culture parameters (pH and Temperature). Considering that the construct will be recellularised with hiPSCs, the monitoring of pH and Temperature is even more important because of the hiPSCs sensibility to pH changes. The realized bioreactor will be tested in order to ensure hydraulic seal and the maintenance of sterility. Then, recellularisation experiments with hiPSCs will be conducted to validate the system and the differentiation stage reached by the cells will be analysed. As a second project, a bioreactor for the perfusion of a bioengineered 3D bile duct with complete functionality was realized. There are no bioreactors for bile ducts currently used in this research project, the realization of a system able to maintain certain culture condition allowing 3D dynamic culture of engineered bile ducts is an important achievement for the research. Considering the fundamental role of bile duct in liver functionality, this second project was developed in order to produce engineered bile ducts for bile ducts replacement. The construct is composed by an electrospun PCLU tube and Human primary Cholangiocytes cells derived from common bile duct. The customized bioreactor has to support the cells survival and the maintenance of a lumen inside the construct in order to create a complete functional engineered bile duct. The hydraulic seal and the maintenance of sterility will be evaluated for the realized bioreactor. Then, cellularisation experiments with Human primary Cholangiocytes will be conducted. Cell viability will be analysed at the end of the experiments in order to evaluate the system functionality. Both bioreactors realized are able to maintain sterility and to keep the constructs in dynamic culture for several weeks. They are able to isolate the constructs from the external environment providing the correct oxygenation and perfusion.File | Dimensione | Formato | |
---|---|---|---|
2019_12_Turchetta.PDF
non accessibile
Descrizione: Testo della tesi
Dimensione
42.77 MB
Formato
Adobe PDF
|
42.77 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/151124