The aim of this thesis is to analyse the possibility of the Acid Gas to Syngas™ (AG2S™) technology, a novel technology developed by SuPER (Sustainable Process Engineering Research) team of Politecnico di Milano. In particular, this work evaluates its possibility as a new frontier for sulphur recovery and carbon dioxide emissions reduction in refineries. The novelty of AG2S™ lies in the capability of producing syngas, a valuable product, from acid gases (H2S and CO2), which are refinery by-products. They are, in fact, treated and abated in specific units before being released in the atmosphere due to their toxicity toward humans and the environment. Syngas production is possible thanks to the novel Regenerative Thermal Reactor (RTR) that, working in particular conditions, exploits two different mechanisms: the thermal cracking of H2S and the oxyreduction of H2S by CO2 at high temperature. However, not only syngas production is thermodynamically limited, but also a slow cooling of the gases exiting the reactor appears to be a problem. In fact, a slow cooling allows the reactions to go backward consuming the products and giving back the reactants. Therefore, an analysis of the sensitivity of different parameters was done in order to find how to hinder the recombination reactions. Then, the initial idea was to implement AG2S™ as a revamping of the already-running Claus plant. To test its potential, an applicability range based on industrial data was created. From this range, for the cases in which AG2S™ design worked, a preliminary economic evaluation was carried out. In particular, for an illustrative case, called “case study”, every step of each one of the analysis was shown in detail. Even if the emission reduction is remarkable (more than 90%), revenues from syngas can’t cover the cost of the revamped plant resulting, moreover, in an added cost of 30-40$ per ton of treated sulphur. As things currently stand, the Claus configuration is still more profitable. Then, the greenfield application has been considered since it was expected to appear more profitable. The results show that the great environmental benefits are still present and, in determined cases, AG2S™ is even economically sustainable.
L’obiettivo di questa tesi è indagare se e quando la nuova tecnologia chiamata Acid gas to SyngasTM (AG2S™), sviluppata dal SuPER (Sustainable Process Engineering Research) team del Politecnico di Milano, possa migliorare le attuali procedure di abbattimento dello zolfo e ridurre le emissioni di biossido di carbonio nelle raffinerie. L’innovazione introdotta dall’AG2S™ è quella di trasformare le emissioni di H2S e di CO2 (gas nocivi ed inquinanti) in syngas, caratterizzato dall’alto valore economico per via delle sue numerose applicazioni. Questo è possibile grazie all’introduzione di una nuova tipologia di reattore chiamato Reattore Termico Rigenerativo (RTR), il quale sfrutta il cracking termico dell’H2S combinato all’ossiriduzione tra H2S (specie riducente) e CO2 (specie ossidante) ad alta temperatura. Purtroppo, oltre alla conversione limitata, anche un raffreddamento troppo lento della corrente uscente dal reattore costituisce un problema, porta infatti i prodotti a ricombinarsi nei reagenti di partenza. È risultato necessario quindi effettuare un’analisi sulla sensibilità rispetto ai vari parametri che influenzano il controllo della temperatura nella zona termica del processo al fine di limitare questo effetto indesiderato. L’idea di partenza era l’applicazione dell’AG2S™ come revamping degli attuali processi di trattamento di gas acido in raffineria e per poter valutare le sue potenzialità d’impiego si è definito un range di applicabilità basato su dati industriali. Ai casi che permettevano l’implementazione è seguita una valutazione economica e, in particolare, per un caso definito “caso studio”, ogni passaggio della fase di design e di valutazione economica è stato mostrato nel dettaglio. Per quanto la riduzione delle emissioni fosse superiore al 90%, il ricavo dalla vendita del syngas non era sufficiente a ripagare l’investimento richiesto portando ad un costo operativo di circa 30-40$/ton di zolfo trattato. Nonostante le migliorie dal punto di vista del design, l’attuale processo Claus è risultato ancora economicamente preferibile. Si è valutata quindi l’idea di applicare la tecnologia ad un caso greenfield, cioè ad un impianto non già esistente e senza quindi avere vincoli dati da apparecchiature già installate. Non solo i vantaggi a livello di impatto ambientale persistono in tutti i casi indagati, si è arrivati anche ad individuare dei casi nei quali un impianto con tecnologia AG2S™ risulti essere economicamente sostenibile.
Techno-economic feasibility study of acid gas to syngas (AG2S) technology applied to oil refinery
LORENZIN, VITTORIO;MOISE, RICCARDO
2018/2019
Abstract
The aim of this thesis is to analyse the possibility of the Acid Gas to Syngas™ (AG2S™) technology, a novel technology developed by SuPER (Sustainable Process Engineering Research) team of Politecnico di Milano. In particular, this work evaluates its possibility as a new frontier for sulphur recovery and carbon dioxide emissions reduction in refineries. The novelty of AG2S™ lies in the capability of producing syngas, a valuable product, from acid gases (H2S and CO2), which are refinery by-products. They are, in fact, treated and abated in specific units before being released in the atmosphere due to their toxicity toward humans and the environment. Syngas production is possible thanks to the novel Regenerative Thermal Reactor (RTR) that, working in particular conditions, exploits two different mechanisms: the thermal cracking of H2S and the oxyreduction of H2S by CO2 at high temperature. However, not only syngas production is thermodynamically limited, but also a slow cooling of the gases exiting the reactor appears to be a problem. In fact, a slow cooling allows the reactions to go backward consuming the products and giving back the reactants. Therefore, an analysis of the sensitivity of different parameters was done in order to find how to hinder the recombination reactions. Then, the initial idea was to implement AG2S™ as a revamping of the already-running Claus plant. To test its potential, an applicability range based on industrial data was created. From this range, for the cases in which AG2S™ design worked, a preliminary economic evaluation was carried out. In particular, for an illustrative case, called “case study”, every step of each one of the analysis was shown in detail. Even if the emission reduction is remarkable (more than 90%), revenues from syngas can’t cover the cost of the revamped plant resulting, moreover, in an added cost of 30-40$ per ton of treated sulphur. As things currently stand, the Claus configuration is still more profitable. Then, the greenfield application has been considered since it was expected to appear more profitable. The results show that the great environmental benefits are still present and, in determined cases, AG2S™ is even economically sustainable.File | Dimensione | Formato | |
---|---|---|---|
Techno-economic feasibility study of Acid Gas to Syngas (AG2STM) technology applied to oil refinery.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Thesis text
Dimensione
3.14 MB
Formato
Adobe PDF
|
3.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/151156