Bio-oils from fast pyrolysis of lignocellulosic biomass represent one of the most suitable alternatives to fossil fuels. Oxygenated aromatics such as phenol, anisole, catechol, guaiacol, methyl-anisole, cresol and vanillin constitute a large fraction of the final product. In addition to the interest in the direct use of bio-oils for heating applications, many oxygenated aromatics with mono or multiple substitutions are attracting interest as anti-knocking additives for commercial gasolines. In this thesis, ignition delay times measurements have been performed in the Rapid Compression Machine available at the Physico-Chemical Fundamentals of Combustion Laboratory (PCFC-RWTH Aachen, Germany) to investigate the anti-knocking propensity of several oxygenated aromatic hydrocarbons, aiming to provide alternative solutions for gasoline blends formulation. The ignition behaviour of different oxygenated aromatics (guaiacol, phenetole, 4-methyl anisole, benzyl alcohol) has been tested both for pure fuel/air mixture and in mixture with n-pentane (RON=MON=62) so as to highlight their effect on a relatively low octane number reference component. The comparison with well-known anti-knocking components such as toluene and ethanol supports the interest in bio-derived aromatic additives. In parallel to the experimental activity, the kinetic model developed at the Chemical Reaction Engineering and Chemical Kinetics Laboratory (CRECK-Politecnico di Milano) has been updated and extended to better describe the combustion characteristics of these new fuels according to a reaction class based approach. Reference kinetic parameters for relevant reaction classes such as, H-abstraction reactions by H, OH, CH3 and O2 have been determined with Ab-initio Transition State Theory based Master Equation methods(AI-TST-ME), as implemented in the EStokTP protocol also developed at Politecnico di Milano. This work provides a prototypical comprehensive multi-scale approach to fuel design, covering from molecular level a priori calculations to real-engines application. Moreover, due to the hierarchical nature of combustion (e.g. toluene>phenil radical>phenoxy radical>phenol), the activity here carried out serves as a further improvement to reaction subsets that are of relevance also for PAHs growth kinetics, leading to particulate matter formation. Finally, this activity poses a solid basis for future efforts in the fundamental investigation of other relevant reaction classes for which accurate theoretical estimates are still lacking from the available scientific literature.

I bio-oli derivati dalla fast-pyrolysis di biomassa lignocellulosica rappresentano una delle alternative più concrete ai combustibili fossili. Idrocarburi ossigenati aromatici come fenolo, anisolo, catecolo, guaiacolo, metil anisolo, e vanillina costituiscono la maggioranza del prodotto finale. In aggiunta all’interesse per l’utilizzo diretto dei bio-oli come combustibile, diversi idrocarburi aromatici ossigenati mono- o multi-sostituti si stanno rivelando interessanti come additivi antidetonanti per le benzine commerciali. In questa tesi, misure di ritardo nei tempi di ignizione sono state realizzate utilizzando la Rapid Compression Machine disponibile al Physico-Chemical Fundamentals of Combustion Laboratory (PCFC-RWTH Aachen, Germania), con lo scopo di investigare la tendenza antidetonante di diversi idrocarburi aromatici ossigenati per fornire soluzioni alternative alla formulazione delle benzine. I tempi di ignizione di diversi idrocarburi aromatici ossigenati (fenetolo, metil anisolo, guaiacolo e alcol benzilico) sono stati testati sia per puro combustibile/aria sia in miscela con n-pentano (RON=MON=62), in modo tale da evidenziare il loro effetto rispetto a un composto di riferimento con basso numero di ottano. Il confronto con molecole antidetonanti note, come toluene ed etanolo, supporta l’interesse nei confronti degli additivi aromatici di natura rinnovabile. Parallelamente all’attività sperimentale, il modello cinetico sviluppato al Chemical Reaction Engineering and Chemical Kinetics Laboratory (CRECK-Politecnico di Milano) è stato aggiornato ed esteso per descrivere meglio il processo di combustione di questi nuovi combustibili, utilizzando l’approccio basato sulle classi di reazioni. I parametri cinetici di riferimento per le classi di reazioni rilevanti, come le estrazioni di H da parte di H, OH, CH3 e O2 sono stati determinati con il metodo Ab-initio Transition State Theory based Master Equation (AI-TST-ME) implementato nel protocollo EStokTP, che è stato sviluppato al Politecnico di Milano. Questo lavoro fornisce un completo approccio prototipico di natura multi-scala per il design di combustibili, partendo da calcoli a priori su scala molecolare e arrivando ad applicazioni su motori reali. Inoltre, a causa della natura gerarchica della combustione (e.g toluene> radicale fenilico> radicale fenossido> fenolo), l’attività svolta in questa tesi serve come ulteriore miglioramento anche per le sottoclassi di reazioni che sono rilevanti per la cinetica di crescita dei PAH, responsabili della formazione del particolato. In conclusione, questo lavoro pone una solida base per sforzi futuri rivolti all’investigazione di altre rilevanti classi di reazione, per le quali accurate stime teoriche ancora non sono presenti nella letteratura scientifica.

A rapid compression machine assessment of antiknocking properties of oxygenated aromatic hydrocarbons from the fast pyrolysys of biomass : experimental, theoretical and kinetic modelling study

CARUSO, STEFANO;CISLAGHI, GIANMARCO
2018/2019

Abstract

Bio-oils from fast pyrolysis of lignocellulosic biomass represent one of the most suitable alternatives to fossil fuels. Oxygenated aromatics such as phenol, anisole, catechol, guaiacol, methyl-anisole, cresol and vanillin constitute a large fraction of the final product. In addition to the interest in the direct use of bio-oils for heating applications, many oxygenated aromatics with mono or multiple substitutions are attracting interest as anti-knocking additives for commercial gasolines. In this thesis, ignition delay times measurements have been performed in the Rapid Compression Machine available at the Physico-Chemical Fundamentals of Combustion Laboratory (PCFC-RWTH Aachen, Germany) to investigate the anti-knocking propensity of several oxygenated aromatic hydrocarbons, aiming to provide alternative solutions for gasoline blends formulation. The ignition behaviour of different oxygenated aromatics (guaiacol, phenetole, 4-methyl anisole, benzyl alcohol) has been tested both for pure fuel/air mixture and in mixture with n-pentane (RON=MON=62) so as to highlight their effect on a relatively low octane number reference component. The comparison with well-known anti-knocking components such as toluene and ethanol supports the interest in bio-derived aromatic additives. In parallel to the experimental activity, the kinetic model developed at the Chemical Reaction Engineering and Chemical Kinetics Laboratory (CRECK-Politecnico di Milano) has been updated and extended to better describe the combustion characteristics of these new fuels according to a reaction class based approach. Reference kinetic parameters for relevant reaction classes such as, H-abstraction reactions by H, OH, CH3 and O2 have been determined with Ab-initio Transition State Theory based Master Equation methods(AI-TST-ME), as implemented in the EStokTP protocol also developed at Politecnico di Milano. This work provides a prototypical comprehensive multi-scale approach to fuel design, covering from molecular level a priori calculations to real-engines application. Moreover, due to the hierarchical nature of combustion (e.g. toluene>phenil radical>phenoxy radical>phenol), the activity here carried out serves as a further improvement to reaction subsets that are of relevance also for PAHs growth kinetics, leading to particulate matter formation. Finally, this activity poses a solid basis for future efforts in the fundamental investigation of other relevant reaction classes for which accurate theoretical estimates are still lacking from the available scientific literature.
BÜTTGEN, RENE DANIEL
HEUFER, ALEXANDER
PRATALI MAFFEI, LUNA
ING - Scuola di Ingegneria Industriale e dell'Informazione
18-dic-2019
2018/2019
I bio-oli derivati dalla fast-pyrolysis di biomassa lignocellulosica rappresentano una delle alternative più concrete ai combustibili fossili. Idrocarburi ossigenati aromatici come fenolo, anisolo, catecolo, guaiacolo, metil anisolo, e vanillina costituiscono la maggioranza del prodotto finale. In aggiunta all’interesse per l’utilizzo diretto dei bio-oli come combustibile, diversi idrocarburi aromatici ossigenati mono- o multi-sostituti si stanno rivelando interessanti come additivi antidetonanti per le benzine commerciali. In questa tesi, misure di ritardo nei tempi di ignizione sono state realizzate utilizzando la Rapid Compression Machine disponibile al Physico-Chemical Fundamentals of Combustion Laboratory (PCFC-RWTH Aachen, Germania), con lo scopo di investigare la tendenza antidetonante di diversi idrocarburi aromatici ossigenati per fornire soluzioni alternative alla formulazione delle benzine. I tempi di ignizione di diversi idrocarburi aromatici ossigenati (fenetolo, metil anisolo, guaiacolo e alcol benzilico) sono stati testati sia per puro combustibile/aria sia in miscela con n-pentano (RON=MON=62), in modo tale da evidenziare il loro effetto rispetto a un composto di riferimento con basso numero di ottano. Il confronto con molecole antidetonanti note, come toluene ed etanolo, supporta l’interesse nei confronti degli additivi aromatici di natura rinnovabile. Parallelamente all’attività sperimentale, il modello cinetico sviluppato al Chemical Reaction Engineering and Chemical Kinetics Laboratory (CRECK-Politecnico di Milano) è stato aggiornato ed esteso per descrivere meglio il processo di combustione di questi nuovi combustibili, utilizzando l’approccio basato sulle classi di reazioni. I parametri cinetici di riferimento per le classi di reazioni rilevanti, come le estrazioni di H da parte di H, OH, CH3 e O2 sono stati determinati con il metodo Ab-initio Transition State Theory based Master Equation (AI-TST-ME) implementato nel protocollo EStokTP, che è stato sviluppato al Politecnico di Milano. Questo lavoro fornisce un completo approccio prototipico di natura multi-scala per il design di combustibili, partendo da calcoli a priori su scala molecolare e arrivando ad applicazioni su motori reali. Inoltre, a causa della natura gerarchica della combustione (e.g toluene> radicale fenilico> radicale fenossido> fenolo), l’attività svolta in questa tesi serve come ulteriore miglioramento anche per le sottoclassi di reazioni che sono rilevanti per la cinetica di crescita dei PAH, responsabili della formazione del particolato. In conclusione, questo lavoro pone una solida base per sforzi futuri rivolti all’investigazione di altre rilevanti classi di reazione, per le quali accurate stime teoriche ancora non sono presenti nella letteratura scientifica.
Tesi di laurea Magistrale
File allegati
File Dimensione Formato  
2019_12_Caruso_Cislaghi.pdf

solo utenti autorizzati dal 02/12/2020

Descrizione: Testo della tesi
Dimensione 7.46 MB
Formato Adobe PDF
7.46 MB Adobe PDF   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/151219