The use of hydrogen as an energy source to be exploited in the transportation sector is possible thanks to the proton exchange membrane fuel cells (PEMFC). They are devices that generate electric current without any pollutant emissions, thanks to the electrochemical reactions of hydrogen oxidation (anode side) and oxygen reduction (cathode side), whose product is only water. This technology has significant advantages, like the already mentioned absence of hazardous emissions and the high efficiency of the energy conversion process. Nevertheless, its diffusion on the market is limited by the high costs, mainly due to the utilization of platinum as catalyst for the reactions, and the low durability. Reducing the platinum utilization, especially at the cathode catalyst layer, is fundamental to make fuel cell electric vehicles (FCEV) competitive with the other solutions in the market, like internal combustion engines and battery electric vehicles. This goal needs to be achieved guaranteeing that low platinum PEMFC will maintain high performances. The work of this M.Sc. thesis is developed following two parallel paths, whose final aim is to understand the physical phenomena that limit the performances of the cell with a low-Pt loading, particularly in the conditions actually experienced in automotive applications. Both commercial cells and innovative low platinum samples have been investigated through a detailed experimental campaign, introduced in previous works and further extended and depth for the specific purposes of this step of the project. The innovative cells are manufactured with a low-Pt loaded cathode catalyst layer, which approaches the target set by the U.S. Department of Energy (DoE) for a substantial cost reduction of the technology. Some improvements for these samples have been proposed and realized, that led to a remarkable enhancement of the performances with respect to the starting point of the project.
L’utilizzo dell’idrogeno come fonte di energia da sfruttare nel settore dei trasporti è possibile grazie alle celle a combustibile con membrana a scambio protonico, note con l’acronimo inglese PEMFC. Sono dispositivi che, grazie alle reazioni elettrochimiche di ossidazione dell’idrogeno (lato anodo) e di riduzione dell’ossigeno (lato catodo), permettono di generare corrente elettrica in assenza di emissioni nocive nell’atmosfera, in quanto l’unico prodotto delle suddette reazioni è l’acqua. Malgrado i significativi vantaggi di questa tecnologia, quali la già citata assenza di emissioni inquinanti e l’elevata efficienza del processo di conversione dell’energia, la sua diffusione è limitata principalmente dall’elevato costo, dovuto in gran parte all’utilizzo del platino come catalizzatore delle reazioni, e dalla ridotta vita utile. Ridurre l’utilizzo del platino, in particolare nel catalyst layer del catodo, risulta quindi di fondamentale importanza per rendere i veicoli elettrici alimentati con celle a combustibile (FCEV) competitivi con le altre soluzioni presenti sul mercato. Tale obiettivo deve essere raggiunto garantendo che le celle a basso carico di platino (low platinum PEMFC) mantengano elevate prestazioni. Il lavoro sviluppato in questa tesi magistrale si svolge su due percorsi paralleli, il cui scopo finale è quello di comprendere i fenomeni fisici che limitano le prestazioni delle celle a basso carico catalitico nelle condizioni in cui esse operano in campo automotive. Tramite una dettagliata campagna sperimentale, introdotta in precedenti lavori e ulteriormente approfondita per le specifiche esigenze del presente progetto, sono stati analizzati sia campioni di celle commerciali sia celle innovative con un carico di platino molto basso che si avvicina al target introdotto dal Dipartimento di Energia (DoE) degli Stati Uniti D’America per una sostanziale riduzione del costo della tecnologia. Per queste ultime sono state proposte alcune migliorie che hanno portato ad un significativo aumento delle prestazioni rispetto al punto di partenza del progetto.
Experimental study of low-platinum PEMFC in automotive conditions : improvement of innovative catalyst layers and comparison with commercial materials
MORETTI, GIORGIO;ARNOLDI, MICHELE
2018/2019
Abstract
The use of hydrogen as an energy source to be exploited in the transportation sector is possible thanks to the proton exchange membrane fuel cells (PEMFC). They are devices that generate electric current without any pollutant emissions, thanks to the electrochemical reactions of hydrogen oxidation (anode side) and oxygen reduction (cathode side), whose product is only water. This technology has significant advantages, like the already mentioned absence of hazardous emissions and the high efficiency of the energy conversion process. Nevertheless, its diffusion on the market is limited by the high costs, mainly due to the utilization of platinum as catalyst for the reactions, and the low durability. Reducing the platinum utilization, especially at the cathode catalyst layer, is fundamental to make fuel cell electric vehicles (FCEV) competitive with the other solutions in the market, like internal combustion engines and battery electric vehicles. This goal needs to be achieved guaranteeing that low platinum PEMFC will maintain high performances. The work of this M.Sc. thesis is developed following two parallel paths, whose final aim is to understand the physical phenomena that limit the performances of the cell with a low-Pt loading, particularly in the conditions actually experienced in automotive applications. Both commercial cells and innovative low platinum samples have been investigated through a detailed experimental campaign, introduced in previous works and further extended and depth for the specific purposes of this step of the project. The innovative cells are manufactured with a low-Pt loaded cathode catalyst layer, which approaches the target set by the U.S. Department of Energy (DoE) for a substantial cost reduction of the technology. Some improvements for these samples have been proposed and realized, that led to a remarkable enhancement of the performances with respect to the starting point of the project.File | Dimensione | Formato | |
---|---|---|---|
2019_12_Arnoldi_Moretti.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
7.28 MB
Formato
Adobe PDF
|
7.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/151282