Since its discovery in 2004, graphene (Gr) has been thought to be successfully exploited in many different applications due to its peculiar mechanical and electronic properties. In the last decade, synthesis methods for graphene have been improved in order to make it possible obtaining high quality single layer of graphene for very large areas, up to 30 cm^2 [A. Ferrari et al. Nanoscale 7 (2015) 4598]. Since a great number of the modern electronic devices include metal/semiconductor interfaces, many efforts have been done in the study of graphene/metal systems. One of the reasons about the difficulty in implementing graphene/metal interfaces in modern applications must be found in the fact that it strongly interacts with the material on which it is interfaced, losing its peculiar electronic structure. A promising method to decouple graphene from the substrate on which it is grown consists in the intercalation of atoms, or even molecules, at the graphene/metal interface. Besides, the intriguing results obtained by intercalating transition metals atoms, less efforts have been done considering other elements or compounds. The main porpouses of this thesis are to investigate how the intercalation of rare earths atoms, and in particular Erbium (Er), could a ect the electronic structure of the Gr/Ni(111) interface and also to explore the possibility of growing an ultrathin oxide layer within the Gr/Er/Ni(111) system. The chemical properties of the samples have been investingated by exploiting Auger Electron Spectroscopy, while structural, morphological and electronic properties were studied by means of Low Energy Electron Diffraction, Scanning Tunneling Microscopy and Spectroscopy and Angular Resolved Photoemission Spectroscopy, respectively. The obtained results show that Er can be intercalted under Gr only at high temperature, originating an ordered p(2 x 2) reconstruction. On the contrary, at room temperature, Er tends to form clusters on the graphene surface. Exposing the intercalated system to an oxygen rich atmosphere it is possible to obtain the oxidation of the intercalted Er, making it feasable to growth Er oxide at the Gr/Ni(111) interface.
Fin dalla sua scoperta avvenuta nel 2004, si è pensato che il grafene (Gr) potesse trovare impiego in diverse applicazioni grazie alle sue peculiari proprietà meccaniche ed elettroniche. Nell'ultimo decennio, i metodi per sintetizzare il grafene sono migliorati al punto da riuscire ad ottenere un singolo strato di grafene di dimensioni nell'ordine dei cm^2 [A. Ferrari et al. Nanoscale 7 (2015) 4598]. Attualmente, molte delle attuali applicazioni elettroniche sono basate sulle interfacce metallo/semiconduttore, motivo per cui le interfacce grafene/metallo sono un ambito di elevata importanza nell'attuale ricerca scientifica. La principale ragione a causa della lenta implementazione delle interfacce grafene/metallo nelle moderne applicazioni va imputata sulla forte interazione tra il grafene e il substrato su cui viene cresciuto, causandone la perdita delle sue peculiari proprietà. Un possibile metodo per disaccoppiare il grafene dal substrato su cui è cresciuto, consiste nell'intercalare atomi, o molecole, all'interfaccia grafene/metallo. Nonostante i promettenti risultati ottenuti intercalando atomi appartenenti al gruppo dei metalli di transizione, molto meno studiate sono le interfacce in cui sono stati intercalati altri elementi o composti. Gli obiettivi principali di questa tesi sono studiare come l'intercalazione di terre rare, in particolare Erbio (Er), possa modificare la struttura elettronica del sistema Gr/Ni(111) e la possibilità di crescere film ultrasottili di ossidi all'interfaccia Gr/Er/Ni(111). Le proprietà chimiche del sistema sono state studiate mediante Auger Electron Spectroscopy, mentre le proprietà strutturali, morfologiche ed elettroniche sono state studiate, rispettivamente, attraverso Low Energy Electron Diffraction, Scanning Tunneling Microscopy and Spectroscopy e Angular Resolved Photoemission Spectroscopy.\\ I risultati ottenuti mostrano che l'erbio può essere intercalato sotto al grafene solamente ad alta temperatura, dando origine ad una ricostruzione p(2 x 2). Al contrario, a temperatura ambiente, l’erbio tende a formare cluster sul grafene. Esponendo il sistema intercalato ad una atmosfera ricca di ossigeno è possibile ossidare l'erbio intercalato, rendendo fattibile la crescita di ossido di erbio all'interfaccia Gr/Ni(111).
Intercalation and oxidation of erbium on graphene on Ni(111)
CAPRA, MICHELE
2018/2019
Abstract
Since its discovery in 2004, graphene (Gr) has been thought to be successfully exploited in many different applications due to its peculiar mechanical and electronic properties. In the last decade, synthesis methods for graphene have been improved in order to make it possible obtaining high quality single layer of graphene for very large areas, up to 30 cm^2 [A. Ferrari et al. Nanoscale 7 (2015) 4598]. Since a great number of the modern electronic devices include metal/semiconductor interfaces, many efforts have been done in the study of graphene/metal systems. One of the reasons about the difficulty in implementing graphene/metal interfaces in modern applications must be found in the fact that it strongly interacts with the material on which it is interfaced, losing its peculiar electronic structure. A promising method to decouple graphene from the substrate on which it is grown consists in the intercalation of atoms, or even molecules, at the graphene/metal interface. Besides, the intriguing results obtained by intercalating transition metals atoms, less efforts have been done considering other elements or compounds. The main porpouses of this thesis are to investigate how the intercalation of rare earths atoms, and in particular Erbium (Er), could a ect the electronic structure of the Gr/Ni(111) interface and also to explore the possibility of growing an ultrathin oxide layer within the Gr/Er/Ni(111) system. The chemical properties of the samples have been investingated by exploiting Auger Electron Spectroscopy, while structural, morphological and electronic properties were studied by means of Low Energy Electron Diffraction, Scanning Tunneling Microscopy and Spectroscopy and Angular Resolved Photoemission Spectroscopy, respectively. The obtained results show that Er can be intercalted under Gr only at high temperature, originating an ordered p(2 x 2) reconstruction. On the contrary, at room temperature, Er tends to form clusters on the graphene surface. Exposing the intercalated system to an oxygen rich atmosphere it is possible to obtain the oxidation of the intercalted Er, making it feasable to growth Er oxide at the Gr/Ni(111) interface.File | Dimensione | Formato | |
---|---|---|---|
Intercalation and Oxidation of Erbium on Graphene on Ni(111).pdf
solo utenti autorizzati dal 28/11/2022
Descrizione: Testo della Tesi
Dimensione
6.42 MB
Formato
Adobe PDF
|
6.42 MB | Adobe PDF | Visualizza/Apri |
Intercalation and Oxidation of Erbium on Graphene on Ni(111).pdf
solo utenti autorizzati dal 03/12/2022
Descrizione: Testo della Tesi
Dimensione
6.21 MB
Formato
Adobe PDF
|
6.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/151292