Aluminum is widely used as an important additive to improve ballistic and energy performance in solid propellants. The condensed combustion products (CCPs) however, do not contribute to the improvement of the specific impulse and have both thermal and momentum two-phase flow losses and furthermore, slag accumulation occurs. Therefore an accurate analysis must be done, in order to prevent or limit such phenomena. In the present investigation a computational analysis of the combusted gases passing through the chamber of a solid rocket motor has been conducted. This thesis describes the behavior of aluminum (Al) particles unburned in solid propellant combustion gases. The goal is to define the velocity profiles and particle distributions along the chamber in the subsonic segment, specifically by simplifying the complex physics, in order to get a com- prehensive model of the combustion chamber flow field. The goal is achieved by means of a coupled Eulerian-Lagrangian description of the flow field in the open- source environment OpenFOAM. A multiphase and incompressible subsonic flow has been employed, in order to model and study the clouds of particles of differ- ent size. The results of particles behavior and tracking show a good agreement with the trend of the main experimental results obtained in the past.
Le particelle di alluminio sono spesso usate come addittivo per migliorare le prestazioni di un motore a propellente solido. I prodotti condensati di combustione (CCPs) non con- tribuiscono però a migliorare l’impulso specifico, provocano infatti un perdita energetica nel flusso e inoltre danno luogo al fenomeno dell’accumulazione di particelle. Quindi, se si vuole prevedere e limitire questi fenomeni una analisi accurata è necessaria. Nel presente lavoro di tesi, una analisi computazionale dei gas combusti all’interno della camera di combustione è stata svolta, dando maggiore attenzione alla descrizione della dinamica delle particelle di al- luminio (Al) non combuste. L’obiettivo, quindi, risulta essere quello di definire e identificare i profili di velocità e la distribuzione delle particelle nella sezione subsonica della camera. Per raggiungere lo scopo della tesi, si è fatto uso di una descrizione Eulero-Lagrangiana del flusso mediante l’utilizzo del software OpenFOAM. Un flusso multifase subsonico e incom- primibile è stato scelto per modellare e studiare i gruppi di particelle di differente grandezza. I risultati ottenuti mostrano una buona similarità con i risultati degli esperimenti più noti.
Non-reacting multiphase flow inside a 2D rocket motor chamber
OTTINÀ, VINCENZO
2019/2020
Abstract
Aluminum is widely used as an important additive to improve ballistic and energy performance in solid propellants. The condensed combustion products (CCPs) however, do not contribute to the improvement of the specific impulse and have both thermal and momentum two-phase flow losses and furthermore, slag accumulation occurs. Therefore an accurate analysis must be done, in order to prevent or limit such phenomena. In the present investigation a computational analysis of the combusted gases passing through the chamber of a solid rocket motor has been conducted. This thesis describes the behavior of aluminum (Al) particles unburned in solid propellant combustion gases. The goal is to define the velocity profiles and particle distributions along the chamber in the subsonic segment, specifically by simplifying the complex physics, in order to get a com- prehensive model of the combustion chamber flow field. The goal is achieved by means of a coupled Eulerian-Lagrangian description of the flow field in the open- source environment OpenFOAM. A multiphase and incompressible subsonic flow has been employed, in order to model and study the clouds of particles of differ- ent size. The results of particles behavior and tracking show a good agreement with the trend of the main experimental results obtained in the past.File | Dimensione | Formato | |
---|---|---|---|
Non-Reacting Multiphase Flow Inside a 2D Rocket Motor Chamber.pdf
non accessibile
Descrizione: TESI
Dimensione
2.68 MB
Formato
Adobe PDF
|
2.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/151633