In this thesis a semi-analytical formulation is presented for studying non-linear vibrations of variable stiffness plates (VSP). The kinematic behaviour of the plates under analysis is modelled using classical von K´arm´an theory. The relevant governing equations are derived through a variational principle applied with the Ritz method. Four solution strategies are developed for the non-linear dynamic analysis: (i) direct numerical time integration, (ii) a non-linear iterative procedure based on the harmonic balance method (HBM), (ii) method of averaging, and (iiii) a perturbation procedure. Both forced and free non-linear vibrations are treated throughout the thesis. The influence of boundary conditions, imperfection amplitudes, and lamination sequences on the non-linear response is also discussed. The final part of this work is devoted to a comparison of the different solving techniques.
In questa tesi una formulazione semianalitica viene presentata per lo studio di vibrazioni non linear di pannelli sottili a rigidezza variabile. Il comportamento cinematico dei panelli analizzati viene modellato usando la teoria classica di K´arm´an. Le equationi di moto sono derivate attraverso l’applicazione di un principio variazionale assieme al metodo di Ritz. Quattro procedure sono state sviluppate per l’analisi dinamica non lineare: (i) integrazione diretta, (ii) una procedura iterativa basata sul metodo del bilancio di armoniche, (iii) il metodo delle medie, e (iiii) una procedura perturbativa. Entrambe vibrazioni libere e forzate vengono trattate nel corso della tesi. Particolare attenzione viene posta sugli effetti delle conditioni al contorno, imperfezioni, e sequenza di laminazione sulla risposta dinamica non lineare. La parte finale del lavoro `e dedicata a un confronto delle diverse procedure.
Non-linear vibrations of variable stiffness plates using Ritz and perturbation methods
YAN, CHENG ANGELO
2018/2019
Abstract
In this thesis a semi-analytical formulation is presented for studying non-linear vibrations of variable stiffness plates (VSP). The kinematic behaviour of the plates under analysis is modelled using classical von K´arm´an theory. The relevant governing equations are derived through a variational principle applied with the Ritz method. Four solution strategies are developed for the non-linear dynamic analysis: (i) direct numerical time integration, (ii) a non-linear iterative procedure based on the harmonic balance method (HBM), (ii) method of averaging, and (iiii) a perturbation procedure. Both forced and free non-linear vibrations are treated throughout the thesis. The influence of boundary conditions, imperfection amplitudes, and lamination sequences on the non-linear response is also discussed. The final part of this work is devoted to a comparison of the different solving techniques.File | Dimensione | Formato | |
---|---|---|---|
tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Non-linear vibrations of Variable Stiffness Plates using Ritz and perturbation methods
Dimensione
3.23 MB
Formato
Adobe PDF
|
3.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/151679