The scope of the present work focuses on two-phase curved pipe flow akin to injection systems. These configurations are ubiquitous in many technical applications such as heat exchangers, nuclear reactors and internal combustion engines. Flows in bends are characterised by strong secondary motions in terms of counter-rotating vortices, called Dean cells, set up by a centrifugal instability. The topic is furthered complicated by the multi-phase nature of the flow. The work of this thesis is motivated by the necessity to understand how the Dean flow affects the liquid jet breakup and the resulting atomization regime properties. Specifically, the thesis deals with laminar and turbulent, single-phase and two-phase flows, in 90 and 180 degrees curved pipes. Initially, Direct Numerical Simulations are performed on single-phase flow considering a range of Dean numbers from 5 to 5000. Governing equations are solved using the open-source computational fluid dynamics package OpenFOAM and the pimpleFoam solver which implements the `pressure-implicit with splitting of operators' (PISO) method and vorticity analysis in performed. Then, multi-phase flow is introduced considering Weber numbers equal to 40000 and 4000000. The algebraic-type VoF method is used to capture the liquid-gas interface. In order to validate the numerical setup, results are compared against analytical solutions and both experimental and numerical results presented in other studies. Good coherence is observed, particularly for low Dean numbers. Furthermore, secondary flow and vortex structures are analysed. It is found that for De equal to 5 and 50 the classical Dean cells are present, for De equal to 500 cells splitting appears and for De equal to5000 multiple counter-rotating vortex structures as well as the swirl-switching phenomenon are observed. Finally, alpha fuel contours are computed, and interface tracking is performed. It is observed that liquid jet breakup is strongly affected by the Dean cells that onset before the injection nozzle. Specifically, higher Dean numbers favours atomization thanks to the extension of the Dean vortex well beyond the nozzle.
L'ambito del presente lavoro è incentrato su flussi bifase in condotti curvi simile a quelli che si sviluppano in sistemi di iniezione. Queste configurazioni sono onnipresenti in molte applicazioni industriali come gli scambiatori di calore, i reattori nucleari e i motori a combustione interna. I flussi in condotti curvi sono caratterizzati da forti velocità secondarie che si manifestano come vortici controrotanti, chiamati celle di Dean, prodotti da un’instabilità centrifuga. L'argomento in questione è ulteriormente complicato dalla natura multifase del flusso. La presente tesi è motivata dalla necessità di comprendere come il flusso di Dean influenzi la disintegrazione del getto liquido e le conseguenti proprietà del regime di atomizzazione. In particolare, la tesi si occupa di flussi laminari e turbolenti, monofase e bifase, in tubi curvi di 90 e 180 gradi. Inizialmente, Direct Numerical Simulations sono state eseguite su flussi monofase considerando una gamma di numeri di Dean da 5 a 5000. Le equazioni di base sono risolte usando il pacchetto open-source di fluidodinamica computazionale OpenFOAM e il risolutore pimpleFoam che implementa il metodo "pressure-implicit with splitting of operators" (PISO); viene inoltre svolta un’analisi della vorticità. Poi, il flusso multifase viene introdotto considerando numeri di Weber pari a 40000 e 4000000. Il metodo VoF di tipo algebrico viene utilizzato per tracciare l'interfaccia liquido-gas. Per convalidare il setup numerico, i risultati vengono confrontati con soluzioni analitiche e i risultati sia sperimentali che numerici presentati in altri studi. Si osserva una buona coerenza, in particolare per numeri di Dean bassi. Inoltre, viene analizzato il moto secondario e i vortici che si sviluppano. Si osserva quindi che per De pari a 5 e 50 sono presenti le classiche celle di Dean, per De pari a 500 appare la divisione delle celle e per De pari a 5000 si osservano strutture vorticose contro-rotanti multiple e il fenomeno di inversione dei vortici. Infine, vengono visualizzati gli iso-contorni del coefficiente volumetrico liquido e si monitora l'interfaccia. Si osserva che l’atomizzazione del getto liquido è fortemente influenzata dai vortici di Dean che si formano prima dell'ugello di iniezione. In particolare, un numero di Dean più elevato favorisce l'atomizzazione grazie alla protrusione delle celle vorticose ben oltre l'ugello.
Influence of fully developed Dean flow on the atomization of a liquid jet
BURIGO, ALBERTO
2018/2019
Abstract
The scope of the present work focuses on two-phase curved pipe flow akin to injection systems. These configurations are ubiquitous in many technical applications such as heat exchangers, nuclear reactors and internal combustion engines. Flows in bends are characterised by strong secondary motions in terms of counter-rotating vortices, called Dean cells, set up by a centrifugal instability. The topic is furthered complicated by the multi-phase nature of the flow. The work of this thesis is motivated by the necessity to understand how the Dean flow affects the liquid jet breakup and the resulting atomization regime properties. Specifically, the thesis deals with laminar and turbulent, single-phase and two-phase flows, in 90 and 180 degrees curved pipes. Initially, Direct Numerical Simulations are performed on single-phase flow considering a range of Dean numbers from 5 to 5000. Governing equations are solved using the open-source computational fluid dynamics package OpenFOAM and the pimpleFoam solver which implements the `pressure-implicit with splitting of operators' (PISO) method and vorticity analysis in performed. Then, multi-phase flow is introduced considering Weber numbers equal to 40000 and 4000000. The algebraic-type VoF method is used to capture the liquid-gas interface. In order to validate the numerical setup, results are compared against analytical solutions and both experimental and numerical results presented in other studies. Good coherence is observed, particularly for low Dean numbers. Furthermore, secondary flow and vortex structures are analysed. It is found that for De equal to 5 and 50 the classical Dean cells are present, for De equal to 500 cells splitting appears and for De equal to5000 multiple counter-rotating vortex structures as well as the swirl-switching phenomenon are observed. Finally, alpha fuel contours are computed, and interface tracking is performed. It is observed that liquid jet breakup is strongly affected by the Dean cells that onset before the injection nozzle. Specifically, higher Dean numbers favours atomization thanks to the extension of the Dean vortex well beyond the nozzle.File | Dimensione | Formato | |
---|---|---|---|
tesiB.pdf
non accessibile
Descrizione: Tesi pdf
Dimensione
51.84 MB
Formato
Adobe PDF
|
51.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/151808