The objective of this study is to analyze startups in big data analytics business at an international level and discover the current situation in the market in terms of business type and geographical scope. Another aspect of the study is on the funds, it is aimed at illuminating the investment choices by category. The literature review provides a basis of knowledge which includes theoretical information about big data and analytics, characteristics of big data, big data analytics technologies and data science. Furthermore, there is a sub-section dedicated to startups to provide the fundamental knowledge that might be needed to grasp the terminology of the analysis better. The analysis has been conducted based on the data which has been extracted from Crunchbase.com and prepared for the analysis. The startups framework had been developed by Big Data Analytics & Business Intelligence Observatory in the first place and has been adjusted for this study. The results show the distribution of the startups into defined macro categories and sub-categories with the geographical regions they cover with operations and the amount of funds they got invested, which clarifies the present situation of big data analytics market and the investment patterns.
L'obiettivo di questo studio è analizzare le startup nel settore di big data analytics a livello internazionale e scoprire la situazione attuale del mercato in termini di tipo di business e ambito geografico. Un altro aspetto dello studio è sui fondi, ha lo scopo di illuminare le scelte di investimento per categoria. La revisione della letteratura fornisce una base di conoscenza che include informazioni teoriche su big data e analytics, caratteristiche di big data, tecnologie di big data analytics e data science. Inoltre, esiste una sottosezione dedicata alle startup per fornire le conoscenze fondamentali che potrebbero essere necessarie per comprendere meglio la terminologia dell'analisi. 2 L'analisi è stata condotta sulla base dei dati estratti da Crunchbase.com e preparati per l'analisi. Il framework delle startup era stato sviluppato da L’Osservatorio Big Data Analytics & Business Intelligence ed è stato adattato per questo studio. I risultati mostrano la distribuzione delle startup in macrocategorie e sottocategorie definite con le regioni geografiche che coprono con le operazioni e la quantità di fondi che hanno investito, il che chiarisce la situazione attuale del mercato di big data analytics e i modelli di investimento.
International census of data science & analytics startups
KAYA, MEHMET ALPER
2018/2019
Abstract
The objective of this study is to analyze startups in big data analytics business at an international level and discover the current situation in the market in terms of business type and geographical scope. Another aspect of the study is on the funds, it is aimed at illuminating the investment choices by category. The literature review provides a basis of knowledge which includes theoretical information about big data and analytics, characteristics of big data, big data analytics technologies and data science. Furthermore, there is a sub-section dedicated to startups to provide the fundamental knowledge that might be needed to grasp the terminology of the analysis better. The analysis has been conducted based on the data which has been extracted from Crunchbase.com and prepared for the analysis. The startups framework had been developed by Big Data Analytics & Business Intelligence Observatory in the first place and has been adjusted for this study. The results show the distribution of the startups into defined macro categories and sub-categories with the geographical regions they cover with operations and the amount of funds they got invested, which clarifies the present situation of big data analytics market and the investment patterns.File | Dimensione | Formato | |
---|---|---|---|
Thesis Project - Mehmet Alper Kaya - 892775.pdf
accessibile in internet per tutti
Descrizione: Thesis text
Dimensione
1.44 MB
Formato
Adobe PDF
|
1.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/151841