This Master Thesis work, carried out at MEMS and Microsensors laboratory, presents an innovative MEMS gyroscope which combines Lissajous frequency modulation and piezoresistive readout through sub-micrometric gauge. The aim is to satisfy the challenging requirements of low noise and of high stability, over both time and temperature, needed by innovative applications such as indoor navigation or mixed reality. In particular, after carrying out an analysis on the oscillatory loop’s phase noise, the electro-mechanical design of three yaw gyroscopes (two at 27 kHz, one at 90 kHz), three pitch-roll gyroscopes (two at 27 kHz, one at 60 kHz), a quad-mass gyroscope has been implemented and their relative Cadence layout has been realized. The extracted sizing has been used in a behavioural model which includes the electronic design of two Lissajous oscillatory loops. Model results validate the expected performances both in therms of high stability (< 1 mdps) and of low noise (< 1 mdps/sqrt(Hz)), performances which are not obtainable with state-of-the-art technology.

In questo lavoro di Tesi, svolto presso il laboratorio di MEMS e Microsensori, si presenta un innovativo giroscopio MEMS che coniuga, per la prima volta, una modulazione in frequenza di tipo Lissajous con una lettura piezoresistiva a gauge di dimensioni sub-micrometriche. La sua progettazione deriva dalle richieste del mercato di dispositivi a basso rumore e con alta stabilità sia nel tempo che in temperatura, per applicazioni innovative quali la realtà aumentata e la navigazione indoor. Nello specifico, dopo una analisi preliminare di rumore di fase dell’anello oscillante, si è passato alla progettazione elettro-meccanica di tre versioni di giroscopi yaw (due a 27 kHz, uno a 90 kHz), di tre giroscopi pitch-roll (due a 27 kHz, uno a 60 kHz), di un giroscopio quad-mass ed alla realizzazione dei relativi layout Cadence. I dimensionamenti così ottenuti sono stati utilizzati all’interno di un modello comportamentale che include la progettazione elettronica dei due anelli oscillatori che implementano la modalità Lissajous. I risultati di tale modello validano le prestazioni attese in termini di stabilità (< 1 mdps) e basso rumore bianco (< 1 mdps/sqrt(Hz)), prestazioni non ottenibili con dispositivi allo stato dell’arte.

Giroscopi MEMS a modulazione di frequenza di tipo Lissajous basati su lettura NEMS piezoresistiva

GIANOLLO, MATTEO
2018/2019

Abstract

This Master Thesis work, carried out at MEMS and Microsensors laboratory, presents an innovative MEMS gyroscope which combines Lissajous frequency modulation and piezoresistive readout through sub-micrometric gauge. The aim is to satisfy the challenging requirements of low noise and of high stability, over both time and temperature, needed by innovative applications such as indoor navigation or mixed reality. In particular, after carrying out an analysis on the oscillatory loop’s phase noise, the electro-mechanical design of three yaw gyroscopes (two at 27 kHz, one at 90 kHz), three pitch-roll gyroscopes (two at 27 kHz, one at 60 kHz), a quad-mass gyroscope has been implemented and their relative Cadence layout has been realized. The extracted sizing has been used in a behavioural model which includes the electronic design of two Lissajous oscillatory loops. Model results validate the expected performances both in therms of high stability (< 1 mdps) and of low noise (< 1 mdps/sqrt(Hz)), performances which are not obtainable with state-of-the-art technology.
GADOLA, MARCO
ING - Scuola di Ingegneria Industriale e dell'Informazione
18-dic-2019
2018/2019
In questo lavoro di Tesi, svolto presso il laboratorio di MEMS e Microsensori, si presenta un innovativo giroscopio MEMS che coniuga, per la prima volta, una modulazione in frequenza di tipo Lissajous con una lettura piezoresistiva a gauge di dimensioni sub-micrometriche. La sua progettazione deriva dalle richieste del mercato di dispositivi a basso rumore e con alta stabilità sia nel tempo che in temperatura, per applicazioni innovative quali la realtà aumentata e la navigazione indoor. Nello specifico, dopo una analisi preliminare di rumore di fase dell’anello oscillante, si è passato alla progettazione elettro-meccanica di tre versioni di giroscopi yaw (due a 27 kHz, uno a 90 kHz), di tre giroscopi pitch-roll (due a 27 kHz, uno a 60 kHz), di un giroscopio quad-mass ed alla realizzazione dei relativi layout Cadence. I dimensionamenti così ottenuti sono stati utilizzati all’interno di un modello comportamentale che include la progettazione elettronica dei due anelli oscillatori che implementano la modalità Lissajous. I risultati di tale modello validano le prestazioni attese in termini di stabilità (< 1 mdps) e basso rumore bianco (< 1 mdps/sqrt(Hz)), prestazioni non ottenibili con dispositivi allo stato dell’arte.
Tesi di laurea Magistrale
File allegati
File Dimensione Formato  
2019_12_Gianollo.pdf

non accessibile

Descrizione: Testo della tesi
Dimensione 10.22 MB
Formato Adobe PDF
10.22 MB Adobe PDF   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/151981