The thesis project is based on the research of high-k polymers for high energy-storage applications. Among the dielectric materials commonly used for capacitor technology, polymers show successful properties that make them very promising for high-energy storage applications such as high breakdown strength, high energy density and the inherent flexibility. Concerning all the parameters that can evaluate the performances of a capacitor, the energy-storage efficiency is the most important since it gives an indication of the amount of stored energy inside the dielectric with respect to the amount of energy dissipated. In the last years several works focused on the enhancement of permittivity and breakdown strength of dielectrics have been done in order to improve the stored energy. However, polymeric dielectric materials still suffer from intrinsic limitations which severely hinder their application in high-performance capacitors, that show both large energy density and high storage efficiency. Among these limitations, the most important ones involve hysteresis losses, stability in temperature and leakage currents. This thesis work provides a strategy to improve the dielectric properties of the fluorinated terpolymer P(VDF-TrFE-CTFE) through the realization of multi-layered structures. The architecture is based on coupling the terpolymer with a high-k dielectric polymer that has dielectric characteristics able to act as “barrier layer” against electron flow (namely leakage current), and thus enhancing the performances of the novel capacitor structure. Before the fabrication of the multi-layered structures, a preliminary study on selected materials is done in order to identify the most performant high-k barrier layer. Subsequently, the influence of the thicknesses of each polymer layer of the double layered structure is investigated and an optimized configuration is identified. Finally, after design and processing optimization, multi-layered structures are realized using different materials as barrier layer and their performance are characterized. Investigation of thermal stability is performed on those the structure showing the best results at ambient temperature. This work demonstrates that, thanks to proper thicknesses ratio and good material choice, it is possible to enhance the efficiency of a double-layered polymeric capacitor by improving dielectric strength and decreasing the dielectric losses.
Il progetto di tesi è incentrato sullo studio di polimeri con un’alta costante dielettrica per applicazioni high-energy storage. Tra i materiali dielettrici che vengono comunemente usati per lo sviluppo di capacitori, i polimeri esibiscono ottime proprietà che li rendono molto promettenti per applicazioni high-energy storage. Alcune di queste caratteristiche sono l’alta resistenza al breakdown, l’elevata densità di energia e l’intrinseca flessibilità. In merito ai parametri che possono essere utilizzati per valutare le performance di un capacitore, l’efficienza con cui viene immagazzinata l’energia è il più importante poichè fornisce un’indicazione della quantità di energia immagazzinata nel materiale dielettrico rispetto alla quantità di energia dissipata. Negli ultimi anni sono state fatte molte ricerche sui materiali dielettrici per aumentarne la costante dielettrica e la resistenza al breakdown con lo scopo di ottenere un’elevata densità di energia. Tuttavia, i polimeri dielettrici possiedono alcuni limiti intrinsechi che compromettono il loro utilizzo per lo sviluppo di capacitori molto performanti con elevata densità di energia e efficienza. I limiti più importanti riguardano le perdite dovute all’isteresi, la stabilità in temperatura e le correnti di perdita. Questo lavoro di tesi propone una strategia per migliorare le proprietà dielettriche del terpolimero P(VDF-TrFE-CTFE) attraverso la realizzazione di una struttura multilayer. L’architettura consiste nell’accoppiamento dal terpolimero con un altro polimero di alta costante dielettrica (le cui proprietà dielettriche lo rendono “layer barriera” per i flussi elettronici, chiamati correnti di perdita), incrementando quindi, le performance del nuovo capacitore. Prima della realizzazione dei multilayer vengono studiati i singoli materiali in modo da identificare il migliore polimero con il “comportamento barriera”. Successivamente viene analizzato il ruolo dello spessore di ogni singolo layer nella struttura a doppio layer per identificare la configurazione ideale. Infine, dopo l’ottimizzazione della geometria della struttura e il processing, sono realizzati e caratterizzati diversi multilayer accoppiando il terpolimero con diversi materiali barriera. Inoltre, viene anche analizzata la stabilità in temperatura di queste strutture, nonostante i migliori risultati si ottengano a temperatura ambiente. Questo lavoro dimostra che grazie a una scelta corretta degli spessori e dei materiali, è possibile aumentare l’efficienza di un capacitore costituito da due layer di polimeri aumentando la resistenza al breakdown e diminuendo le perdite dielettriche.
Enhancement of energy-storage efficiency of polymeric capacitors with multi-layered structures
FLOCCHINI, ANNALISA
2018/2019
Abstract
The thesis project is based on the research of high-k polymers for high energy-storage applications. Among the dielectric materials commonly used for capacitor technology, polymers show successful properties that make them very promising for high-energy storage applications such as high breakdown strength, high energy density and the inherent flexibility. Concerning all the parameters that can evaluate the performances of a capacitor, the energy-storage efficiency is the most important since it gives an indication of the amount of stored energy inside the dielectric with respect to the amount of energy dissipated. In the last years several works focused on the enhancement of permittivity and breakdown strength of dielectrics have been done in order to improve the stored energy. However, polymeric dielectric materials still suffer from intrinsic limitations which severely hinder their application in high-performance capacitors, that show both large energy density and high storage efficiency. Among these limitations, the most important ones involve hysteresis losses, stability in temperature and leakage currents. This thesis work provides a strategy to improve the dielectric properties of the fluorinated terpolymer P(VDF-TrFE-CTFE) through the realization of multi-layered structures. The architecture is based on coupling the terpolymer with a high-k dielectric polymer that has dielectric characteristics able to act as “barrier layer” against electron flow (namely leakage current), and thus enhancing the performances of the novel capacitor structure. Before the fabrication of the multi-layered structures, a preliminary study on selected materials is done in order to identify the most performant high-k barrier layer. Subsequently, the influence of the thicknesses of each polymer layer of the double layered structure is investigated and an optimized configuration is identified. Finally, after design and processing optimization, multi-layered structures are realized using different materials as barrier layer and their performance are characterized. Investigation of thermal stability is performed on those the structure showing the best results at ambient temperature. This work demonstrates that, thanks to proper thicknesses ratio and good material choice, it is possible to enhance the efficiency of a double-layered polymeric capacitor by improving dielectric strength and decreasing the dielectric losses.File | Dimensione | Formato | |
---|---|---|---|
Enhancement of energy-storage efficiency of polymeric capacitors with multi-layered structures .pdf
non accessibile
Descrizione: Thesis
Dimensione
3.32 MB
Formato
Adobe PDF
|
3.32 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/152107