Fibre reinforced composites have been increasingly adopted in high performances structural components because of their superior mechanical properties and light weight. However, their efficient damage repair represents a major challenge in the industry. Indeed, traditional techniques are expensive, time consuming, invasive and generate large amounts of waste. The present work aims at developing a healable matrix to integrate in pre-impregnated fibre reinforced composites (FRCs), based on polymerization-induced phase separation in epoxy thermoplastic blends. The influence of the molar mass of the components, the viscosity, the cure temperature and the presence of an accelerator on phase separation has been assessed. The mentioned parameters have been optimized to obtain the desired morphology in the cured state. Several potential resin systems have been compared and the most promising one has been chosen on the basis of the flexural storage modulus measured at room and healing temperature (150 °C). In fact, the structural behaviour of the specimens at 150 °C has been crucial to demonstrate the potential of these systems for in-service healing. The selected matrix was integrated in both carbon and glass woven FRCs through conventional processing methods, highlighting the possible up-scaling in industry of the present technology. No difference in the phase separation and fracture mechanism was observed between carbon and glass composites. The flexural properties and interlaminar fracture toughness in Mode I and II have been assessed and compared to standard values found in literature for epoxy-based composites. Specimens tested in Mode II end-notched flexure were subjected to a healing cycle at 150 °C for 30 minutes and re-tested after 30 minutes of rest, to evaluate the healing efficiency. Impact damage is a major concern especially in the aerospace field and for this reason glass composite samples were impacted at different energies, healed and the healing efficiency in terms of damage area recovery was computed.
I materiali compositi fibro-rinforzati sono sempre piú utilizzati nella realizzazione di componenti strutturali ad alte prestazioni, grazie alle loro superiori proprietà meccaniche e leggerezza. Ad ogni modo, efficienti riparazioni rappresentano una delle maggiori sfide per l’industria. Le tecniche tradizionalmente adottate sono costose, invasive, richiedono molto tempo e generano enormi quantità di rifiuti. Il presente lavoro si pone lo scopo di sviluppare una matrice riparabile, da integrare in materiali compositi rinforzati con fibre preimpregnate, e basata sulla separazione di fase indotta dalla polimerizzazione in miscele contenenti una resina epossidica e un termoplastico. È stata valutata l’influenza della massa molare dei componenti, della viscosità, della temperatura e della presenza di un acceleratore sul meccanismo di separazione di fase. I parametri citati sono stati ottimizzati per ottenere la morfologia desiderata. Diversi potenziali sistemi di resine sono stati comparati e il piú promettente è stato individuato sulla base di misurazioni del modulo elastico in flessione a 25 e a 150 °C. Il comportamento tipico di un solido rigido elastico anche alla temperatura di “healing” (150 °C) è risultato chiave per dimostrare le possibilità di “healing” su componenti in opera. La matrice selezionata è stata integrata in compositi a base di fibra di carbonio e di vetro tramite sistemi produttivi convenzionali. Nessuna differenza nel meccanismo di separazione di fase e di rottura è stata osservata fra i compositi a base di carbonio e vetro. Le proprietà in flessione e la tenacità a frattura interlaminare nel Modo I e II sono state misurate e confrontate con i valori standard trovati in letteratura per compositi a base di resina epossidica. I campioni testati in flessione in Modo II sono stati sottoposti a un ciclo di riparazione a 150 °C per 30 minuti, lasciati raffreddare per 30 minuti e ritestati per valutare l’efficienza dell’intervento di riparazione. Inoltre, i compositi rinforzati con fibra di vetro sono stati sottoposti a prove di impatto riparati e l’efficienza della riparazione è stata calcolata in termini di riduzione della superficie danneggiata.
Development of pre-impregnated textiles for healable fibre reinforced composites
SCAZZOLI, CECILIA
2019/2020
Abstract
Fibre reinforced composites have been increasingly adopted in high performances structural components because of their superior mechanical properties and light weight. However, their efficient damage repair represents a major challenge in the industry. Indeed, traditional techniques are expensive, time consuming, invasive and generate large amounts of waste. The present work aims at developing a healable matrix to integrate in pre-impregnated fibre reinforced composites (FRCs), based on polymerization-induced phase separation in epoxy thermoplastic blends. The influence of the molar mass of the components, the viscosity, the cure temperature and the presence of an accelerator on phase separation has been assessed. The mentioned parameters have been optimized to obtain the desired morphology in the cured state. Several potential resin systems have been compared and the most promising one has been chosen on the basis of the flexural storage modulus measured at room and healing temperature (150 °C). In fact, the structural behaviour of the specimens at 150 °C has been crucial to demonstrate the potential of these systems for in-service healing. The selected matrix was integrated in both carbon and glass woven FRCs through conventional processing methods, highlighting the possible up-scaling in industry of the present technology. No difference in the phase separation and fracture mechanism was observed between carbon and glass composites. The flexural properties and interlaminar fracture toughness in Mode I and II have been assessed and compared to standard values found in literature for epoxy-based composites. Specimens tested in Mode II end-notched flexure were subjected to a healing cycle at 150 °C for 30 minutes and re-tested after 30 minutes of rest, to evaluate the healing efficiency. Impact damage is a major concern especially in the aerospace field and for this reason glass composite samples were impacted at different energies, healed and the healing efficiency in terms of damage area recovery was computed.File | Dimensione | Formato | |
---|---|---|---|
2019_12_Scazzoli.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
5.35 MB
Formato
Adobe PDF
|
5.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/152118