Mechanical rock excavation, that is the removal of rock material by means of heavy cutting or digging equipment, has had a great relevance to the evolution of society because of its application to the mining and construction sectors. In particular, coal extraction and underground mining boosted the development of this technology. Nowadays, mechanical excavation is applied in a variety of industries and faces the challenges of the contemporary world: economic competitiveness and environmental sustainability. To deliver on these expectations, a constant evolution in the excavation process understanding and in the equipment technology is fundamental, and this has pushed the scientific community to develop a new discipline called “rock-cutting mechanics”. The authors made an important effort to improve the comprehension of the mechanics of rock cutting, in particular of the chip creation phase. This is fundamental to guide the development of tools and systems, and to address the major challenges as the improvement of penetration efficiency, and the minimization of the wear. At the same time, several models were developed for the calculation of excavation forces and this was done with numerical, theorical and experimental approaches. However, the prediction of the loads acting on the equipment’s structure and on the tools, due to the dynamics of the cutting process is still an open issue. During the excavation, the machine’s structure is excited by the cutting actions, generated by the picks-rock interaction, and its vibration can, in turn, influence the cutting process. These vibrations, if not properly addressed, can lead to failures which have heavy economical drawbacks and also endanger the safety of the operators. The present work focuses, then, on the development of a model to simulate the machine’s dynamics during the excavation, intended as a tool to support the design of safer and more reliable machines. This goal was pursued with the study of a 1150XHD RH rock milling machine produced by the company Tesmec S.p.A.. Experimental evidence of the machine’s behaviour, in an actual operative situation, was gathered and a model to simulate its dynamics was developed and validated.
Lo scavo meccanizzato in roccia, ovvero la rimozione di materiale roccioso mediante attrezzature pesanti di taglio o di scavo, ha avuto una grande rilevanza per l'evoluzione della società, grazie alla sua applicazione nei settori minerario e delle costruzioni. In particolare, l'estrazione del carbone ed, in generale, l'estrazione sotterranea hanno favorito lo sviluppo di questa tecnologia. Oggigiorno, lo scavo meccanizzato viene applicato in una varietà di settori e affronta le sfide del mondo contemporaneo: competitività economica e sostenibilità ambientale. Per soddisfare queste aspettative, una costante evoluzione della comprensione del processo di scavo e della tecnologia delle attrezzature è fondamentale.Questo ha spinto la comunità scientifica a sviluppare una nuova disciplina chiamata "meccanica della roccia". Gli autori hanno fatto uno sforzo importante per migliorare la comprensione della meccanica del taglio della roccia, in particolare della fase di creazione del chip. Questo aspetto è infatti fondamentale per guidare lo sviluppo di strumenti e sistemi, e per affrontare le principali sfide come il miglioramento dell'efficienza della penetrazione e la minimizzazione dell'usura. Allo stesso tempo, sono stati sviluppati diversi modelli per il calcolo delle forze di scavo e questo è stato fatto con approcci numerici, teorici e sperimentali. Tuttavia, la previsione dei carichi che agiscono sulla struttura delle macchine e sugli utenisili, a causa della dinamica del processo di taglio è ancora un problema aperto. Durante lo scavo, la struttura della macchina è eccitata dalle azioni di taglio, generate dall'interazione utensile-roccia, e la sua vibrazione può, a sua volta, influenzare il processo di taglio. Queste vibrazioni, se non adeguatamente indirizzate, possono portare a guasti che hanno gravi ripercussioni economiche e mettono anche in pericolo la sicurezza degli operatori. Il presente lavoro si concentra, quindi, sullo sviluppo di un modello per simulare la dinamica della macchina durante lo scavo, inteso come uno strumento per supportare la progettazione di macchine più sicure e più affidabili. Questo obiettivo è stato perseguito con lo studio di una fresa per roccia RH 1150XHD, prodotta dalla società Tesmec S.p.A. Sono state raccolti dati sperimentali del comportamento della macchina, in un contesto operativo significativo, ed è stato sviluppato e convalidato un modello per simularne la dinamica.
Numerical-experimental approach for the investigation of the dynamics of a surface miner
MEDOLAGO, ALESSANDRO
Abstract
Mechanical rock excavation, that is the removal of rock material by means of heavy cutting or digging equipment, has had a great relevance to the evolution of society because of its application to the mining and construction sectors. In particular, coal extraction and underground mining boosted the development of this technology. Nowadays, mechanical excavation is applied in a variety of industries and faces the challenges of the contemporary world: economic competitiveness and environmental sustainability. To deliver on these expectations, a constant evolution in the excavation process understanding and in the equipment technology is fundamental, and this has pushed the scientific community to develop a new discipline called “rock-cutting mechanics”. The authors made an important effort to improve the comprehension of the mechanics of rock cutting, in particular of the chip creation phase. This is fundamental to guide the development of tools and systems, and to address the major challenges as the improvement of penetration efficiency, and the minimization of the wear. At the same time, several models were developed for the calculation of excavation forces and this was done with numerical, theorical and experimental approaches. However, the prediction of the loads acting on the equipment’s structure and on the tools, due to the dynamics of the cutting process is still an open issue. During the excavation, the machine’s structure is excited by the cutting actions, generated by the picks-rock interaction, and its vibration can, in turn, influence the cutting process. These vibrations, if not properly addressed, can lead to failures which have heavy economical drawbacks and also endanger the safety of the operators. The present work focuses, then, on the development of a model to simulate the machine’s dynamics during the excavation, intended as a tool to support the design of safer and more reliable machines. This goal was pursued with the study of a 1150XHD RH rock milling machine produced by the company Tesmec S.p.A.. Experimental evidence of the machine’s behaviour, in an actual operative situation, was gathered and a model to simulate its dynamics was developed and validated.File | Dimensione | Formato | |
---|---|---|---|
2019_07_PhD_Medolago.pdf
non accessibile
Descrizione: Thesis text
Dimensione
46.77 MB
Formato
Adobe PDF
|
46.77 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/152140