The benefits of personal mobility are unquestionable. However, with its high number of fatalities every year, road traffic accidents are still one of the top causes of death world- wide. Despite enormous efforts by the scientific community and industry to make vehicles safer, traditional technological development has proved unable to cope with this issue en- tirely. Studies show that human factors, rather than vehicle performance, are contributing to the numerous vehicle fatalities. More than ever, drivers are distracted by external fac- tors and electronic devices, reducing their capability to counteract unexpected situations and increasing the likelihood of a crash. Furthermore, emergency calls are often delayed when nobody witnesses the accident, increasing the risk of serious injury or fatality if the injured person(s) are incapable of calling for help. Inspired by standard medical practices, this thesis presents a set of methods that aim to reduce the number of accidents, both for motorists and pedestrians, and mitigate their consequences. Overall, the proposed strategy can be broken down into three main phases: prevention, prompt diagnosis, and immediate therapy. First, we discuss an algorithm that promotes safe driving practices by enabling driver awareness, focusing on the driver’s average driving behavior. In this context, we investigate how to account for the use of smartphones while driving, which is a known dangerous habit. Then, in the unfortunate occurrence of a crash, we propose a method for automatically detecting it, grading its severity, and calling for rescue in case the person is injured or needs immediate assistance. Following the same approach, we present a similar strategy for pedestrians, in which we detect when the subject loses consciousness, becoming incapable of calling for rescue. Additionally, for some specific anomaly events, we provide a methodology that deploys an airbag cushion placed inside a garment, aiming to mitigate the injuries severity. Thanks to the increasing availability of smart devices, we have chosen to leverage ma- chine learning and data analysis techniques to tackle the aforementioned challenges. Spe- cial attention has been devoted to designing a flexible, methodical sounding algorithmic structure, whose outcome could be easily interpreted and the overall system adapted to different problems. The proposed framework has also been designed considering the lim- ited resources of telematics e-Boxes, smart devices already used by a large number of drivers due to widespread use and promotion by automotive insurance companies. All the proposed methods have been validated against data collected during dedicated ex- perimental campaigns, involving both regular drivers, riders, and pedestrians, but also professional riders on high-speed track tests and professional stuntmen for characterizing the most dangerous dynamics.
I benefici della mobilità personale sono indiscutibili. Tuttavia, dato il gran numero di morti ogni anno, gli incidenti stradali sono ancora una delle principali cause di morte mondiale. Nonostante lo sforzo enorme della comunità scientifica e delle aziende per rendere i veicoli più sicuri, il tradizionale sviluppo tecnologico ha dimostrato di non saper far fronte con questo problema. Studi dimostrano che fattori umani, anziché relativi alle prestazioni del veicolo, contribuiscono al gran numero di morti sulle strade. Ora più che mai, i conducenti dei propri veicoli sono distratti da fattori esterni e dispositivi elettronici, i quali riducono la capacità dei guidatori di far fronte a situazioni impreviste, aumentando la probabilità d’incidente. Per di più, le chiamate d’emergenza sono spesso ritardate quando non vi sono testimoni dell’incidente, aumentando il rischio di infortuni gravi e morte se la persona/le persone coinvolte non riescono a chiamare i soccorsi autonomamente. Ispirata dalle pratiche mediche più comuni, questa tesi presenta un insieme di metodi che ambisce a ridurre il numero d’incidenti, sia per conducenti di veicoli a motore che pedoni, riducendo le conseguenze di un infortunio. La strategia proposta può essere divisa in tre fasi principali: prevenzione, pronta diagnosi e terapia immediata. In primo luogo, in questa tesi si discute un algoritmo che promuove pratiche di guida sicura tramite l’aumento di consapevolezza del conducente, mediante l’analisi dello stile di guida. In questo contesto, si è studiato come tenere in considerazione l’uso del cellulare alla guida, la cui pratica è considerata particolarmente rischiosa. In secondo luogo, nello sfortunata occorrenza di un incidente, proponiamo un metodo per il riconoscimento e la classificazione dell’evento stesso, chiamando automaticamente i soccorsi qualora la persona risultasse infortunata o avesse bisogno di rapida assistenza. Allo stesso modo, presentiamo una strategia simile per pedoni, la quale riconosce quando la persona perde i sensi e risulta impossibilitata a chiamare i soccorsi. In aggiunta, per alcune tipologie d’incidente, proponiamo una metodologia per l’attivazione di un airbag, posizionato all’interno di un indumento, al fine di minimizzare la gravità degli infortuni. Grazie all’aumento dei dispositivi considerati intelligenti, abbiamo scelto di sfruttare le recenti tecniche di machine learning e d’analisi dei dati per affrontare le sfide appena menzionate. Particolare attenzione è stata dedicata alla progettazione di algoritmi flessibili e metodologicamente solidi, il cui output possa essere facilmente interpretato e riadattato a differenti problemi. La struttura proposta è stata progettata considerando anche le limitate risorse delle scatole telematiche, già utilizzate da un gran numero di automobilisti grazie al crescente uso da parte delle compagnie assicurative. Tutti i metodi qui presentati sono stati validati sperimentalmente tramite campagne sperimentali dedicate, le quali includono automobilisti, motociclisti, pedoni, piloti e stuntman professionisti per caratterizzare le dinamiche più pericolose.
Accident prevention, detection, and early response: Using machine learning and data analysis to improve driver and pedestrian safety
GELMINI, SIMONE
Abstract
The benefits of personal mobility are unquestionable. However, with its high number of fatalities every year, road traffic accidents are still one of the top causes of death world- wide. Despite enormous efforts by the scientific community and industry to make vehicles safer, traditional technological development has proved unable to cope with this issue en- tirely. Studies show that human factors, rather than vehicle performance, are contributing to the numerous vehicle fatalities. More than ever, drivers are distracted by external fac- tors and electronic devices, reducing their capability to counteract unexpected situations and increasing the likelihood of a crash. Furthermore, emergency calls are often delayed when nobody witnesses the accident, increasing the risk of serious injury or fatality if the injured person(s) are incapable of calling for help. Inspired by standard medical practices, this thesis presents a set of methods that aim to reduce the number of accidents, both for motorists and pedestrians, and mitigate their consequences. Overall, the proposed strategy can be broken down into three main phases: prevention, prompt diagnosis, and immediate therapy. First, we discuss an algorithm that promotes safe driving practices by enabling driver awareness, focusing on the driver’s average driving behavior. In this context, we investigate how to account for the use of smartphones while driving, which is a known dangerous habit. Then, in the unfortunate occurrence of a crash, we propose a method for automatically detecting it, grading its severity, and calling for rescue in case the person is injured or needs immediate assistance. Following the same approach, we present a similar strategy for pedestrians, in which we detect when the subject loses consciousness, becoming incapable of calling for rescue. Additionally, for some specific anomaly events, we provide a methodology that deploys an airbag cushion placed inside a garment, aiming to mitigate the injuries severity. Thanks to the increasing availability of smart devices, we have chosen to leverage ma- chine learning and data analysis techniques to tackle the aforementioned challenges. Spe- cial attention has been devoted to designing a flexible, methodical sounding algorithmic structure, whose outcome could be easily interpreted and the overall system adapted to different problems. The proposed framework has also been designed considering the lim- ited resources of telematics e-Boxes, smart devices already used by a large number of drivers due to widespread use and promotion by automotive insurance companies. All the proposed methods have been validated against data collected during dedicated ex- perimental campaigns, involving both regular drivers, riders, and pedestrians, but also professional riders on high-speed track tests and professional stuntmen for characterizing the most dangerous dynamics.File | Dimensione | Formato | |
---|---|---|---|
thesis.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
29.4 MB
Formato
Adobe PDF
|
29.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/152159