The production of a high quality CZTS thin film would be an important achievement for the production of photovoltaic and photoelectrochemical devices. The material is considered a good absorber layer, since the absorption coefficient is high, in the order of 104 cm-1, and its band gap is tuneable between 1.0 and 1.5eV, with the addition of selenium. Since CZTS is composed by cheaper and abundant elements, it is also studied as substituent for CuInxGa1-xSe2 for thin film solar cells, thanks to the analogies in composition and crystal structure between the two semiconductors. Considering that the solar cells produced with the two materials are characterised by different power conversion efficiencies, the research is focused to optimize a fabrication process to increase the performance of the CZTS devices. In the present work, the synthesis of the material was achieved by the electrodeposition of the stacked elemental layer (SEL) of the metallic precursor (Cu-Zn-Sn) followed by sulfurization treatment. The main result of this thesis work is the design and the optimization of a tin electrolyte bath, which is able to produce an unconventional stacked order precursor, where tin is in the middle of zinc and copper. Tin was successfully electrodeposited onto zinc thanks to the addition of diethanolamine (DEA) at different molar ratios with respect to tin ions Sn2+ content, forming a complex species that was characterized by NMR analysis and cyclic voltammetries. A soft annealing was performed at 350°C for 30 minutes to promote an adherent and homogeneous precursor by an alloy formation, followed by a reactive annealing in a graphite box at 550°C for 20 minutes, which introduced sulfur into the metallic precursor, forming the CZTS. Different characterization techniques like XRF, XRD, SEM/EDS have been applied to observe the film composition and morphology at different condition, in order to reduce any possible defects at the first steps of the fabrication route, also Raman spectroscopy was carried out to distinguish the possible secondary phases in CZTS after the reactive annealing.
La produzione di film sottili CZTS di alta qualità costituirebbe un risultato importante per la fabbricazione di dispositivi fotovoltaici e foto-elettrochimici. Il materiale è considerato un buon strato assorbente, poiché il suo coefficiente di assorbimento è elevato, nell'ordine di 104 cm-1, ed il suo band gap varia da 1.0 a 1.5 eV, a seconda dell’aggiunta di selenio. Poiché CZTS è composto di elementi più economici e abbondanti, è studiato anche come un’alternativa per CuInxGa1-xSe2 per celle solari a film sottile, dato che la composizione e la struttura cristallina dei due semiconduttori presentano delle analogie. Considerando che le celle solari prodotte con i due materiali sono caratterizzate da diverse efficienze di conversione, la ricerca è focalizzata nell’ottimizzare un processo di fabbricazione per aumentare le prestazioni dei dispositivi CZTS. Nel presente lavoro, la sintesi del materiale è stata ottenuta mediante elettrodeposizione di stacked elemental layer (SEL) del precursore metallico (Cu-Zn-Sn) seguito da un trattamento di solfurazione. Il risultato principale di questo lavoro di tesi è la progettazione e l'ottimizzazione di un bagno elettrolitico di stagno, che è in grado di produrre un non convenzionale stacked elemental layer , in cui lo stagno è nel mezzo di zinco e rame. Lo stagno è stato elettro-depositato con successo sullo zinco grazie all'aggiunta di dietanolammina (DEA) a diversi rapporti molari rispetto al contenuto di ioni Sn2+, formando una specie complessa, caratterizzata con analisi NMR e ciclo- voltammetrie. In una fornace tubolare, una ricottura per la formazione di una lega tra gli elementi del precursore è stata eseguita a 350°C per 30 minuti per promuovere un precursore adeso e omogeneo, seguita da un reactive annealing in una camera di grafite a 550°C per 20 minuti, che ha introdotto lo zolfo nel precursore metallico, formando la CZTS. Diverse tecniche di caratterizzazione come XRF, XRD, SEM / EDS sono state eseguite per osservare la composizione del film e la morfologia in condizioni diverse, al fine di ridurre eventuali difetti nei primi passi del processo di fabbricazione, inoltre è stata effettuata la spettroscopia Raman per distinguere le possibili fasi secondarie in CZTS dopo il reactive annealing.
Electrochemical synthesis and characterization of an unconventional stacked elemental layer (Zn/Sn/Cu) precursor of CZTS
CASTELLI, FRANCESCO
2018/2019
Abstract
The production of a high quality CZTS thin film would be an important achievement for the production of photovoltaic and photoelectrochemical devices. The material is considered a good absorber layer, since the absorption coefficient is high, in the order of 104 cm-1, and its band gap is tuneable between 1.0 and 1.5eV, with the addition of selenium. Since CZTS is composed by cheaper and abundant elements, it is also studied as substituent for CuInxGa1-xSe2 for thin film solar cells, thanks to the analogies in composition and crystal structure between the two semiconductors. Considering that the solar cells produced with the two materials are characterised by different power conversion efficiencies, the research is focused to optimize a fabrication process to increase the performance of the CZTS devices. In the present work, the synthesis of the material was achieved by the electrodeposition of the stacked elemental layer (SEL) of the metallic precursor (Cu-Zn-Sn) followed by sulfurization treatment. The main result of this thesis work is the design and the optimization of a tin electrolyte bath, which is able to produce an unconventional stacked order precursor, where tin is in the middle of zinc and copper. Tin was successfully electrodeposited onto zinc thanks to the addition of diethanolamine (DEA) at different molar ratios with respect to tin ions Sn2+ content, forming a complex species that was characterized by NMR analysis and cyclic voltammetries. A soft annealing was performed at 350°C for 30 minutes to promote an adherent and homogeneous precursor by an alloy formation, followed by a reactive annealing in a graphite box at 550°C for 20 minutes, which introduced sulfur into the metallic precursor, forming the CZTS. Different characterization techniques like XRF, XRD, SEM/EDS have been applied to observe the film composition and morphology at different condition, in order to reduce any possible defects at the first steps of the fabrication route, also Raman spectroscopy was carried out to distinguish the possible secondary phases in CZTS after the reactive annealing.File | Dimensione | Formato | |
---|---|---|---|
2019_12_Castelli.pdf
non accessibile
Descrizione: testo della tesi
Dimensione
5.46 MB
Formato
Adobe PDF
|
5.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/152258