Carbon fiber reinforced polymers (CFRP) are characterized by unique mechanical properties, specifically, a very high strength-to-weight ratio and a high specific strength, which makes the CFRP promising for structurally demanding applications, e.g. aerospace, automotive and sports equipment. Recently, the growing number of applications utilizing the CFRP gave rise to an increased research interest. Operations on the CFRP, such as the conventional machining, have a lot of drawbacks. These are, for example, high tools wear material delamination, cracking, fiber pull out and swelling. To address these issues new techniques were developed, e.g. laser cutting. It is a non-contact method that is fast, flexible and precise. The laser cutting process of CFRP is still a challenging process due to the differences in evaporation temperature, (500 ℃) for resin and (3000 ℃) for fiber, and the different material absorption coefficients. The present work investigates the challenges of using laser cutting on the CFRP. First, the working ranges of the cutting process that successfully accomplish the task will be defined. Afterward, the quality of the produced cuts will be examined in terms of the delamination percentage, swelling, and others. Lastly, for the interest of the intended applications of the CFRP, the mechanical properties of the after-cut specimens will be characterized. The application of the cutting techniques follows multiple passes to reduce the heat accumulated in the material which was found to be the main reason for damaging and influencing the heat-affected zone. The heat-affected zone and delamination of the material have been analyzed and the mechanical properties were characterized by measuring the short beam strength for the specimens in the after-cut conditions. The experimental results showed higher mechanical strength for the pulsed emission mode than the continuous wave. The highest material strength and least delamination have been achieved at a low emission mode of 100 ns pulse width along with a higher scanning speed of 1500 mm/s and a large number of passes, which allow the materials to have enough time to cool down. Additional working ranges have also been identified and analyzed for the resulting cut qualities and mechanical properties.
I polimeri plastici rinforzati con fibra di carbonio (CFRP) sono caratterizzati da proprietà meccaniche uniche. In particolare, essi godono di un rapporto resistenza-peso e una resistenza specifica molto elevata, tali da renderli promettenti per applicazioni strutturalmente impegnative, come attrezzature aerospaziali, automobilistiche e sportive. Di recente, infatti, le applicazioni che utilizzano i CFRP sono in aumento e questo porta ad un cospicuo aumento delle attività di ricerca in merito. Le operazioni convenzionali sui CFRP presentano molti inconvenienti fra i quali delaminazione, estrazione della fibra e rigonfiamento, i quali hanno portato alla nascita di nuove tecniche di lavorazione, fra le quali l’utilizzo di fasci laser. Quest’ultimo è un metodo senza contatto, immediato, flessibile ed accurato. Il processo di taglio laser dei polimeri plastici rinforzati con fibra di carbonio è ancora un processo impegnativo a causa delle elevate differenze di temperatura di evaporazione della resina (500°C) e delle fibre (3000°C), nonché per la discrepanza nell'assorbimento del calore del materiale. Il presente lavoro esamina le sfide dell'utilizzo del taglio laser sul CFRP. Innanzitutto, verranno definiti le caratteristiche principali del processo di taglio che completano con successo l'attività. Successivamente, la qualità dei tagli prodotti verrà esaminata in termini di percentuale di delaminazione, gonfiore ed altri parametri successivamente definiti. Infine, per testare l’applicabilità dei CFRP, saranno caratterizzate le proprietà meccaniche dei campioni successivi al processo. La tecnica di taglio utilizzata prevede un’applicazione pulsata, in modo tale da ridurre il calore accumulato nel materiale, il quale è ritenuto essere motivo principale di rottura nella zona influenzata termicamente. Quest’ultima, così come la delaminazione del materiale, è stata analizzata, mentre le proprietà meccaniche sono state caratterizzate misurando la forza del fascio corto per i campioni nelle condizioni di post-taglio. I risultati sperimentali hanno mostrato una maggiore resistenza utilizzando un fascio pulsato piuttosto che un fascio continuo. La massima resistenza del materiale e la minore delaminazione si è ottenuta in modalità a bassa emissione con una larghezza di impulso pari a 100 ns, con una velocità di scansione pari a 1500 mm/s e un gran numero di ripetizioni, che consentono ai materiali di avere abbastanza tempo per raffreddarsi. Ulteriori parametri sono stati inoltre identificati e analizzati per le qualità di taglio e le proprietà meccaniche risultanti.
Remote laser cutting of carbon fiber reinforced polymers
SOBIH, AHMED MOHAMED
2018/2019
Abstract
Carbon fiber reinforced polymers (CFRP) are characterized by unique mechanical properties, specifically, a very high strength-to-weight ratio and a high specific strength, which makes the CFRP promising for structurally demanding applications, e.g. aerospace, automotive and sports equipment. Recently, the growing number of applications utilizing the CFRP gave rise to an increased research interest. Operations on the CFRP, such as the conventional machining, have a lot of drawbacks. These are, for example, high tools wear material delamination, cracking, fiber pull out and swelling. To address these issues new techniques were developed, e.g. laser cutting. It is a non-contact method that is fast, flexible and precise. The laser cutting process of CFRP is still a challenging process due to the differences in evaporation temperature, (500 ℃) for resin and (3000 ℃) for fiber, and the different material absorption coefficients. The present work investigates the challenges of using laser cutting on the CFRP. First, the working ranges of the cutting process that successfully accomplish the task will be defined. Afterward, the quality of the produced cuts will be examined in terms of the delamination percentage, swelling, and others. Lastly, for the interest of the intended applications of the CFRP, the mechanical properties of the after-cut specimens will be characterized. The application of the cutting techniques follows multiple passes to reduce the heat accumulated in the material which was found to be the main reason for damaging and influencing the heat-affected zone. The heat-affected zone and delamination of the material have been analyzed and the mechanical properties were characterized by measuring the short beam strength for the specimens in the after-cut conditions. The experimental results showed higher mechanical strength for the pulsed emission mode than the continuous wave. The highest material strength and least delamination have been achieved at a low emission mode of 100 ns pulse width along with a higher scanning speed of 1500 mm/s and a large number of passes, which allow the materials to have enough time to cool down. Additional working ranges have also been identified and analyzed for the resulting cut qualities and mechanical properties.File | Dimensione | Formato | |
---|---|---|---|
Remote Laser Cutting of Carbon Fiber Reinforced Polymers.pdf
non accessibile
Descrizione: Thesis text
Dimensione
10.67 MB
Formato
Adobe PDF
|
10.67 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/152271