Nowadays Additive Manufacturing (AM) processes are spreading in industrial fields, despite their background as “Rapid Prototyping” techniques. The comparison with conventional manufacturing methods becomes necessary to understand its advantages and limitations for industrial and structural applications. Not all parts that are originally designed for conventional manufacturing can be produced by AM in a cost-effective way. The impact of design on costs and functionality of parts produced by AM is significant, because it impacts on printing time and on the material amount for the part generation. There is thus the necessity of re-thinking the design process and of understanding when and how to re-design specifically for AM to successfully meet both performance and economic requirements. In many industrial fields, higher performance of a part is achieved by means a structural optimization: an optimal functional design is obtained with reduced weight, reduced number of components of an assembly and in general a new shape, while complying with some constraint and objectives. Few studies address topology optimization application to re-design parts for AM. The combination of structural optimization algorithms and AM processes seems very promising for metal structures, because the resulting optimized geometries are too complex to be manufactured with conventional subtractive methods, while AM allows to reproduce nearly the theoretical optimal geometry. The aim of this work is to understand the impact of AM on the re-design of a part made of Short Fibre Reinforced Polymers (SFRP) that is usually manufactured by Injection Moulding. In other words, we aim to understand the limits of topology optimization method for weight reduction of parts in SFRP made by AM. A Through Process Modelling (TPM), i.e. a structural Finite Element Analysis (FEA) including results of a Process Simulation, is performed on the original geometry of a commercialized clutch pedal made by Injection Moulding in SFRP, considering the combination of Injection Moulding process simulation and structural FEA results. The original pedal bending stiffness is taken as a reference for the new design to be manufactured by an AM extrusion-based process. A topology optimization method is used for the pedal re-design: the resulting geometries are analysed with a TPM, after embedding data about the material and the AM process.
Le tecnologie di Additive Manufacturing (AM) stanno prendendo sempre più piede in campo industriale, pur essendo nate come tecniche per la prototipazione rapida. Per comprendere a pieno i vantaggi e limiti dell'AM per applicazioni industriali e strutturali, è necessario un paragone con i metodi di produzione convenzionali. Non tutte le parti progettate per essere prodotte con metodi convenzionali sono adatte alla produzione in Additive, o comunque non con grandi profitti. L'impatto della progettazione su costi e funzionalità di parti prodotte con l'AM è significativo, quindi è importante comprendere come progettare in maniera specifica per l'AM per avere un buon compromesso tra performance e costi. In molti settori industriali, una migliore performance di un pezzo si ottiene con un'ottimizzazione strutturale, nei limiti di obiettivi e vincoli. Dall'ottimizzazione si ricava un design funzionale con peso ridotto, minor numero di componenti di un assieme e, in generale, una nuova forma. Pochi studi mostrano applicazioni dell’ottimizzazione topologica per riprogettare parti da produrre in AM che, in effetti, è anche più adatto dei convenzionali metodi sottrattivi a realizzare geometrie così complesse come quelle ottenute dall'ottimizzazione topologica. Infatti, esso consente di riprodurre in maniera abbastanza accurata la geometria teorica e le tecnologie additive che consentono spessori non troppo sottili (come quelle basate sull'estrusione) sono molto promettenti per le strutture metalliche. Lo scopo di questo studio è comprendere l'impatto delle tecnologie AM sulla riprogettazione di una parte in polimeri rinforzati con fibre corte (SFRP) che è tradizionalmente prodotta con un metodo convenzionale. In altri termini, comprendere i limiti dell’ottimizzazione topologica per la riduzione del peso di parti in SFRP prodotti in AM. Una Through Process Modelling (TPM) è stata eseguita sulla geometria originale di un pedale della frizione in commercio, prodotto con Injection Moulding (Stampaggio a iniezione) in SFRP. Quest'analisi tiene conto sia dei risultati della simulazione di processo dell'Injection Moulding che dei risultati di una semplice FEA strutturale. La rigidezza del pedale originale fa da riferimento per la riprogettazione tramite ottimizzazione topologica. Le geometrie ottimizzate sono analizzate con un'analisi strutturale completa, considerando dati del materiale e i risultati di una simulazione di un processo AM estrusivo.
Re-design for additive manufacturing of a part made of short fibre reinforced polymers
BARRICELLI, LUCIA
2018/2019
Abstract
Nowadays Additive Manufacturing (AM) processes are spreading in industrial fields, despite their background as “Rapid Prototyping” techniques. The comparison with conventional manufacturing methods becomes necessary to understand its advantages and limitations for industrial and structural applications. Not all parts that are originally designed for conventional manufacturing can be produced by AM in a cost-effective way. The impact of design on costs and functionality of parts produced by AM is significant, because it impacts on printing time and on the material amount for the part generation. There is thus the necessity of re-thinking the design process and of understanding when and how to re-design specifically for AM to successfully meet both performance and economic requirements. In many industrial fields, higher performance of a part is achieved by means a structural optimization: an optimal functional design is obtained with reduced weight, reduced number of components of an assembly and in general a new shape, while complying with some constraint and objectives. Few studies address topology optimization application to re-design parts for AM. The combination of structural optimization algorithms and AM processes seems very promising for metal structures, because the resulting optimized geometries are too complex to be manufactured with conventional subtractive methods, while AM allows to reproduce nearly the theoretical optimal geometry. The aim of this work is to understand the impact of AM on the re-design of a part made of Short Fibre Reinforced Polymers (SFRP) that is usually manufactured by Injection Moulding. In other words, we aim to understand the limits of topology optimization method for weight reduction of parts in SFRP made by AM. A Through Process Modelling (TPM), i.e. a structural Finite Element Analysis (FEA) including results of a Process Simulation, is performed on the original geometry of a commercialized clutch pedal made by Injection Moulding in SFRP, considering the combination of Injection Moulding process simulation and structural FEA results. The original pedal bending stiffness is taken as a reference for the new design to be manufactured by an AM extrusion-based process. A topology optimization method is used for the pedal re-design: the resulting geometries are analysed with a TPM, after embedding data about the material and the AM process.File | Dimensione | Formato | |
---|---|---|---|
Re-design for Additive Manufacturing of a part made of Short Fibre Reinforced Polymers- Barricelli Lucia 877096.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi pdf
Dimensione
13.7 MB
Formato
Adobe PDF
|
13.7 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/152364