Two-wheeled vehicles are inherently unstable. This has led to the creation, in industrial sector, of different solutions to improve comfort and safety in the use of such vehicles, such as, for example, the introduction of a third wheel or an actuated steering. The solution that we want to propose in this elaboration wants to exploit the gyroscopic effect, by mounting on a motorcycle an actuator system composed of two counter-rotating and counter-tilting flywheels. We proceeded to analyse the system and derive the dynamic equations, also introducing various simplifications useful for deriving systems in the state space form that served to design controllers, the main objective of the present work. The first strategies analysed are a PD control and one implemented with the Sliding Mode theory. Finally, particular attention was paid to the class of LQR controllers, useful for the pursuit of multiple objectives at the same time, such as vehicle stabilization and the zeroing of flywheels position, a fundamental requirement for a system to be mounted on a vehicle that is required to maintain the bike in balance for an indeterminate period of time. Having an experimental setup available, we looked for strategies that could maintain performance even in the presence of noise and measurement offsets. The strategies proposed were tested in a simulation environment allowing the identification of a solid base for the calibration of the controls’ parameters. Finally, they were tested on a vehicle equipped with the discussed actuator. The analysis of the various tests shows good results with stationary motion, with and without a pilot. The stabilization during a braking maneuver has achieved good results only for gentle braking.
I veicoli a due ruote sono intrinsecamente instabili. Ciò ha portato alla realizzazione, in ambito industriale, di diverse soluzioni per migliorare il comfort e la sicurezza nell'utilizzo di tali veicoli, come, per esempio, l’introduzione di una terza ruota o lo sterzo attuato. La soluzione che si vuole proporre in questo elaborato vuole sfruttare l’effetto giroscopico, montando su una moto un sistema di attuatori composto da due volani contro-rotanti e contro-tiltanti. Si è proceduto ad analizzare il sistema e ricavare le equazioni dinamiche, introducendo inoltre diverse semplificazioni utili a ricavare dei sistemi nello spazio di stato che sono serviti a progettare dei controllori, principale obbiettivo del presente lavoro. Le prime strategie analizzate sono un controllo PD e uno realizzato con la teoria Sliding Mode. Infine si è posta particolare attenzione alla classe di controllori LQR, utili al perseguimento di più obiettivi contemporaneamente, come la stabilizzazione del veicolo e l’azzeramento della posizione dei volani, requisito fondamentale per un sistema da montare su un veicolo a cui è richiesto di mantenere la moto in equilibrio per un indeterminato periodo di tempo. Avendo a disposizione un setup sperimentale, si sono cercate delle strategie che potessero mantenere le performance anche in presenza di rumori e offset di misura. Le strategie proposte sono state testate in ambiente simulativo permettendo l’individuazione di una solida base per la taratura dei controlli. Infine sono state testate su un veicolo dotato dell’attuatore discusso. L’analisi dei vari test mostra buoni risultati a moto ferma con e senza pilota. La stabilizzazione durante una frenata ha ottenuto discreti risultati solo per frenate dolci.
Stabilizzazione giroscopica della dinamica di rollio di una motocicletta a basse velocità
SPADA, FEDERICO
2018/2019
Abstract
Two-wheeled vehicles are inherently unstable. This has led to the creation, in industrial sector, of different solutions to improve comfort and safety in the use of such vehicles, such as, for example, the introduction of a third wheel or an actuated steering. The solution that we want to propose in this elaboration wants to exploit the gyroscopic effect, by mounting on a motorcycle an actuator system composed of two counter-rotating and counter-tilting flywheels. We proceeded to analyse the system and derive the dynamic equations, also introducing various simplifications useful for deriving systems in the state space form that served to design controllers, the main objective of the present work. The first strategies analysed are a PD control and one implemented with the Sliding Mode theory. Finally, particular attention was paid to the class of LQR controllers, useful for the pursuit of multiple objectives at the same time, such as vehicle stabilization and the zeroing of flywheels position, a fundamental requirement for a system to be mounted on a vehicle that is required to maintain the bike in balance for an indeterminate period of time. Having an experimental setup available, we looked for strategies that could maintain performance even in the presence of noise and measurement offsets. The strategies proposed were tested in a simulation environment allowing the identification of a solid base for the calibration of the controls’ parameters. Finally, they were tested on a vehicle equipped with the discussed actuator. The analysis of the various tests shows good results with stationary motion, with and without a pilot. The stabilization during a braking maneuver has achieved good results only for gentle braking.File | Dimensione | Formato | |
---|---|---|---|
2019_12_SPADA.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
4.82 MB
Formato
Adobe PDF
|
4.82 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/152565