Cardiovascular Diseases (CVD), such as cardiomyopathy and stroke, are some of the most common illnesses in the developed world. In Europe alone, CVD cause more than 3.9 million deaths per year and are a burden to human society, not only in life cost but also from a financial point of view. The scientific and technical solutions that address this issue are in constant development, but the prevention is always one of the strongest weapons in cases of long-term diseases, such as atherosclerosis. The measurement of physiological parameters, for instance, the concentration of a biomarker in body fluids (i.e., urine, saliva, blood etc.), is often employed in these cases, since it is a relatively easy and non-invasive method. The urge towards precision medicine and data analysis requires the development of new and more efficient instruments and devices for the patients. In this work, a cholesterol detection method based on Molecular Imprinted Polymer (MIP) was designed, developed, manufactured, and tested. This study was carried out in collaboration with the swiss company PRIMA Lab, which produces rapid test for diagnostic purposes, and the swiss University Hesso Vallais, Institute of Life Technologies. The main aim of this project was to study the feasibility of the production of a MIP able to recognize and capture a target molecule (Cholesterol) from a water suspension and to be deposited on an electrode. This polymer properties could not only reduce the cost of production and development, but also provide a sensing platform for a variety of different target molecules. The MIP manufacturing and composition were studied and different monomer combinations were tested. In parallel, a low-cost Potentiostat platform was assembled, in order to have a customized electrochemical measuring system. On the MIP manufacturing side, two different techniques were adopted, i.e., thermally induced radical polymerization and photopolymerization. In order to characterize the polymer matrices, different techniques were used: Optical and SEM microscopy, swelling tests and FTIR spectrometry. To measure the target presence both UV-vis measurement and LC-MS/MS analysis were employed. The results suggest that the recognition of the target is, in fact, possible, with a low cost manufacturing set-up. The electrochemical measurement of a target concentration of Cholesterol was obtained combining a polymer-treated electrode and the Potentiostat, an instrument able to perform different electrochemical measurements when connected to a screen printed electrode. These results suggest that the MIP may be a promising technology in the bio-sensing field and will provide a useful and multi target sensing platform based on personalized and low cost devices.
Le malattie cardiovascolari (CVD), come la Cardiomiopatia e l'Ictus, sono uno dei gruppi di patologie più diffuse nel mondo industrializzato. In Europa, le CVD sono causa di più di 3.9 milioni di morti e hanno un enorme impatto, oltre che in termini di vite umane, anche dal punto di vista economico. Gli strumenti tecnici atti a ridurre questo problema sono in costante sviluppo, ma la prevenzione rimane uno dei nostri alleati migliori per affrontare malattie a lungo termine, come l'aterosclerosi. Il monitoraggio dei livelli di particolari marker biologici nei fluidi del corpo umano (come urina, saliva, sangue etc.), ad esempio, è spesso utilizzato in questi casi, essendo un metodo semplice e non invasivo. La spinta verso lo sviluppo della medicina di precisione necessita di strumenti e tecnologie sempre più efficienti per i pazienti. In questo lavoro, un metodo di detezione basato su Polimeri a Stampo Molecolare, o Molecular Imprinted Polymer (MIP), è stato concepito, sviluppato e testato. Questo studio è stato condotto in collaborazione con l'azienda svizzera PRIMA Lab, impegnata nella produzione di test rapidi a scopo diagnostico, e l'università svizzera Hesso Vallais, Institute of Life Technologies. Lo scopo principale del progetto è stato lo studio della fattibilità della produzoine di un MIP in grado di riconocere e catturare una molecola target (colesterolo) da una sospensione acquosa e di essere depositato su un elettrodo. Le proprietà di questo polimero potrebbero non solo ridurre il costo di produzione e sviluppo, ma anche fornire una piattaforma sensoristica per un insieme di differenti molecole target. La produzione e la composizione dei MIP sono state indagate e diverse composizione polimeriche sono state testate. In parallelo, è stato realizzato un Potenziostato a basso costo, uno strumento in grado di effettuare misure elettrochimiche in maniera rapida e ripetibile. Durante la produzione dei MIP due tecniche di polimerizzazione sono state utilizzate: la polimerizzazione termica e la fotopolimerizzazione. Per ottenere un'accurata caratterizzazione della matrice polimerica, diverse tecniche sono state messe in atto: microscopia ottica e SEM, test di swelling e spettrometria FTIR. Per misurare la presenza del colesterolo è stata utilizzata sia una tecnica di spettrometria UV che un metodo di misura LC-MS/MS. I risultati confermano che il riconoscimento della molecola target è, di fatto, possibile con un setup sperimentale a basso costo. La misura elettrochimica della concentrazione del colesterolo è stata ottenuta combinando un elettrodo su cui il MIP è stato depositato e il Potenziostato. Questi risultati lasciano intuire che i MIP possono essere una tecnologia promettente nel campo della sensoristica e potrebbero fornire uno strumento di misura multi-target su strumenti personalizzati e a basso costo.
Design, preparation and characterization of molecular imprinted polymers as a novel platform for cholesterol sensing
MOTTINI, ITALO
2018/2019
Abstract
Cardiovascular Diseases (CVD), such as cardiomyopathy and stroke, are some of the most common illnesses in the developed world. In Europe alone, CVD cause more than 3.9 million deaths per year and are a burden to human society, not only in life cost but also from a financial point of view. The scientific and technical solutions that address this issue are in constant development, but the prevention is always one of the strongest weapons in cases of long-term diseases, such as atherosclerosis. The measurement of physiological parameters, for instance, the concentration of a biomarker in body fluids (i.e., urine, saliva, blood etc.), is often employed in these cases, since it is a relatively easy and non-invasive method. The urge towards precision medicine and data analysis requires the development of new and more efficient instruments and devices for the patients. In this work, a cholesterol detection method based on Molecular Imprinted Polymer (MIP) was designed, developed, manufactured, and tested. This study was carried out in collaboration with the swiss company PRIMA Lab, which produces rapid test for diagnostic purposes, and the swiss University Hesso Vallais, Institute of Life Technologies. The main aim of this project was to study the feasibility of the production of a MIP able to recognize and capture a target molecule (Cholesterol) from a water suspension and to be deposited on an electrode. This polymer properties could not only reduce the cost of production and development, but also provide a sensing platform for a variety of different target molecules. The MIP manufacturing and composition were studied and different monomer combinations were tested. In parallel, a low-cost Potentiostat platform was assembled, in order to have a customized electrochemical measuring system. On the MIP manufacturing side, two different techniques were adopted, i.e., thermally induced radical polymerization and photopolymerization. In order to characterize the polymer matrices, different techniques were used: Optical and SEM microscopy, swelling tests and FTIR spectrometry. To measure the target presence both UV-vis measurement and LC-MS/MS analysis were employed. The results suggest that the recognition of the target is, in fact, possible, with a low cost manufacturing set-up. The electrochemical measurement of a target concentration of Cholesterol was obtained combining a polymer-treated electrode and the Potentiostat, an instrument able to perform different electrochemical measurements when connected to a screen printed electrode. These results suggest that the MIP may be a promising technology in the bio-sensing field and will provide a useful and multi target sensing platform based on personalized and low cost devices.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Italo_Mottini_.pdf
non accessibile
Descrizione: Thesis text
Dimensione
30.76 MB
Formato
Adobe PDF
|
30.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/152605