Alfvén eigenmodes (AEs) are magnetohydrodynamic waves that can interact with circulating ions, causing their redistribution away from the plasma core. A full understanding of the excitable plasma spectrum is fundamental to achieve a stable fusion reactor operation. This work was motivated by the interest in modelling a JET discharge, where a low frequency, around the half of Toroidicity induced AEs (TAEs), magnetic activity was observed. It is known that the interaction between shear Alfvén and slow sonic continua opens gap of allowed discrete frequencies in the frequency range of interest. However, the coupling mechanisms described in the literature predict frequency values that cannot explain the experimental measurements. We so decided to investigate the effect of plasma geometry on the magnetic field geodesic curvature, responsible for the coupling among the two continua. We employed an analytical equilibrium, able to describe shaped magnetic surfaces, to compute the coefficients weighting the poloidal harmonics of the geodesic curvature. It results that a plasma, elongated in the poloidal section, can couple shear Alfvén and slow sonic branches with a difference up to 3 in the poloidal mode number. Such coupling opens frequency gap were well behaved eigenmodes, named HOGAE, are found numerically. It is precisely in a HOGAE gap that we found a good candidate to explain the observed activity.
I modi normali di Alfvén sono onde magnetoidrodinamiche che possono trasferire energia agli ioni energetici circolanti in un plasma, causando la loro ridistribuzione verso la periferia del plasma. Una comprensione completa dello spettro che può essere eccitato è fondamentale per garantire la stabilità di un reattore a fusione nucleare. Questo lavoro nasce dall’interesse nel modellizzare l’attività magnetica a bassa frequenza, attorno alla metà della frequenza dei TAEs, osservata al JET. È noto che l’interazione tra i continui shear Alfvén e sonico apre degli intervalli di frequenze permesse, all’interno della banda di frequenze di interesse per la modellizzazione. Tuttavia, i meccanismi di interazione descritti in letteratura non forniscono stime numeriche appropriate per spiegare il dato sperimentale. Abbiamo così deciso di studiare l’effetto che la geometria del plasma ha sulla curvatura geodesica, responsabile dell’accoppiamento tra i continui. Abbiamo utilizzato un modello analitico, che descrivesse l’equilibrio magnetico in caso di superfici magnetiche non circolari, per calcolare i coefficienti che pesano le armoniche poloidali della curvatura geodesica. Risulta che un plasma, ellittico nel piano poloidale, accoppia armoniche shear Alfvén e soniche con una differenza uguale o inferiore a 3 nell’indice poloidale. Questo tipo di accoppiamento apre gap di frequenze premesse in cui modi normali non smorzati sono calcolabili numericamente. Chiamiamo tali modi HOGAE. Pensiamo che un modo normale appartenente a questa categoria possa ben spiegare l’attività magnetica osservata al JET.
Investigation of low frequency magnetic activity in fusion plasmas. Shaping effects on the magnetohydrodynamic continuum
CELLA, FRANCESCA
2018/2019
Abstract
Alfvén eigenmodes (AEs) are magnetohydrodynamic waves that can interact with circulating ions, causing their redistribution away from the plasma core. A full understanding of the excitable plasma spectrum is fundamental to achieve a stable fusion reactor operation. This work was motivated by the interest in modelling a JET discharge, where a low frequency, around the half of Toroidicity induced AEs (TAEs), magnetic activity was observed. It is known that the interaction between shear Alfvén and slow sonic continua opens gap of allowed discrete frequencies in the frequency range of interest. However, the coupling mechanisms described in the literature predict frequency values that cannot explain the experimental measurements. We so decided to investigate the effect of plasma geometry on the magnetic field geodesic curvature, responsible for the coupling among the two continua. We employed an analytical equilibrium, able to describe shaped magnetic surfaces, to compute the coefficients weighting the poloidal harmonics of the geodesic curvature. It results that a plasma, elongated in the poloidal section, can couple shear Alfvén and slow sonic branches with a difference up to 3 in the poloidal mode number. Such coupling opens frequency gap were well behaved eigenmodes, named HOGAE, are found numerically. It is precisely in a HOGAE gap that we found a good candidate to explain the observed activity.File | Dimensione | Formato | |
---|---|---|---|
CELLA_FRANCESCA.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
18.69 MB
Formato
Adobe PDF
|
18.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/152640