Disc brakes are exposed to large thermal stresses during routine braking and extraordinary thermal stresses during hard braking. High-g decelerations typical of passenger vehicles are known to generate temperatures as high as 300○C in a fraction of a second. These large temperature excursions have two possible outcomes„ thermal shock that generates surface cracks, and or large amounts of plastic deformation in the brake rotor. In the absence of thermal shock, a relatively small number of high-g braking cycles are found to generate macroscopic cracks running through the rotor. Thermal cracking is commonly observed in disc brake rotors following high-g braking events. The cracks fall into two broad categories„ a series of heat cracks that partially penetrate the surface of the discs and thru-cracks that completely pass through the disc wall. Though it is well known that thermal cracks do arise from hard braking, there is no formal treatment of the problem of thru cracks. Disc brakes are fabricated from grey cast iron. Grey cast iron is chosen for its relatively high thermal conductivity, high thermal diffusivity and low cost. The brake rotor consists of a hat, or hub, which is connected to the wheel and axle, and an inboard and outboard braking surface. The outboard braking surface is attached directly to the hat, while the inboard braking surface is attached to the outboard unit by a series of cooling vanes. A small groove is machined around the periphery of the hat-rotor attachment site to relieve the stress concentration associated with the change in section. To overcome the problem of thermal cracks in discs Grey cast Iron can be replaced with the Al-Si alloys strengthened with Cobalt (Co), Nickel (Ni) and Strontium (Sr), This report reviews thermal analysis of disc brakes and various experiments done by various researchers regarding increasing of mechanical properties of AL-Si alloys at high temperatures which can be used in place of grey cast iron.
I freni a disco sono esposti a forti sollecitazioni termiche durante la frenata di routine e straordinarie sollecitazioni termiche durante una frenata brusca. Le decelerazioni high-g tipiche dei veicoli passeggeri generano temperature fino a 300 ○ C in una frazione di secondo. Queste elevate escursioni termiche hanno due possibili esiti: shock termico che genera fessurazioni superficiali e / o grandi quantità di deformazione plastica nel rotore del freno. In assenza di shock termico, si riscontra che un numero relativamente piccolo di cicli di frenatura ad alto g genera crepe macroscopiche che attraversano il rotore. Il cracking termico è comunemente osservato nei rotori dei freni a disco a seguito di eventi di frenata ad alto g. Le crepe rientrano in due grandi categorie „una serie di crepe termiche che penetrano parzialmente nella superficie dei dischi e attraverso le crepe che attraversano completamente la parete del disco. Sebbene sia noto che le crepe termiche derivano da una forte frenata, non esiste un trattamento formale del problema delle crepe. I freni a disco sono fabbricati in ghisa grigia. La ghisa grigia è scelta per la sua conduttività termica relativamente elevata, elevata diffusività termica e basso costo. Il rotore del freno è costituito da un cappello o mozzo, che è collegato alla ruota e all'asse, e da una superficie di frenata interna ed esterna. La superficie di frenatura esterna è fissata direttamente al cappello, mentre la superficie di frenatura interna è fissata all'unità esterna da una serie di palette di raffreddamento. Una piccola scanalatura è lavorata attorno alla periferia del sito di attacco cappello-rotore per alleviare la concentrazione di sollecitazione associata al cambio di sezione. Per ovviare al problema delle crepe termiche nei dischi La ghisa grigia può essere sostituita con le leghe Al-Si rinforzate con cobalto (Co), nichel (Ni) e stronzio (Sr), Questo rapporto esamina l'analisi termica dei freni a disco e vari esperimenti condotti da vari ricercatori per quanto riguarda l'aumento delle proprietà meccaniche delle leghe AL-Si alle alte temperature che possono essere utilizzate al posto della ghisa grigia.
Review study for engineering application of aluminium alloys to heat resistant component : the case of lightweight brake discs
-
2019/2020
Abstract
Disc brakes are exposed to large thermal stresses during routine braking and extraordinary thermal stresses during hard braking. High-g decelerations typical of passenger vehicles are known to generate temperatures as high as 300○C in a fraction of a second. These large temperature excursions have two possible outcomes„ thermal shock that generates surface cracks, and or large amounts of plastic deformation in the brake rotor. In the absence of thermal shock, a relatively small number of high-g braking cycles are found to generate macroscopic cracks running through the rotor. Thermal cracking is commonly observed in disc brake rotors following high-g braking events. The cracks fall into two broad categories„ a series of heat cracks that partially penetrate the surface of the discs and thru-cracks that completely pass through the disc wall. Though it is well known that thermal cracks do arise from hard braking, there is no formal treatment of the problem of thru cracks. Disc brakes are fabricated from grey cast iron. Grey cast iron is chosen for its relatively high thermal conductivity, high thermal diffusivity and low cost. The brake rotor consists of a hat, or hub, which is connected to the wheel and axle, and an inboard and outboard braking surface. The outboard braking surface is attached directly to the hat, while the inboard braking surface is attached to the outboard unit by a series of cooling vanes. A small groove is machined around the periphery of the hat-rotor attachment site to relieve the stress concentration associated with the change in section. To overcome the problem of thermal cracks in discs Grey cast Iron can be replaced with the Al-Si alloys strengthened with Cobalt (Co), Nickel (Ni) and Strontium (Sr), This report reviews thermal analysis of disc brakes and various experiments done by various researchers regarding increasing of mechanical properties of AL-Si alloys at high temperatures which can be used in place of grey cast iron.File | Dimensione | Formato | |
---|---|---|---|
Thesis Report (2).pdf
accessibile in internet per tutti
Descrizione: Thesis Text
Dimensione
2.92 MB
Formato
Adobe PDF
|
2.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/152741