Introduction Since the late 1990s PEEK has increasingly become an efficient substitute for metal components in orthopedics. Nowadays it is employed in a huge spectra of medical applications, such as: orthopedic surgery, maxillofacial reconstructions, dental implants and spinal surgery. Disorders in the spinal district are very common, chronic back pain is a huge health problem that leads to loss of quality of life and high costs for healthcare system. In particular one of the main causes are disc degenerative diseases which led to a large shift in load-bearing on the column. The overload in the posterior part of the vertebrae can cause two pathological conditions called spondylolysis and spondylolisthesis. This variety of spinal disorders can be treated using a surgical procedure called spinal fusion. It has been estimated that just in the United States over 400.000 spinal fusions per year are performed. The surgery approach aims to stabilize the degenerated segment using a device, the cage, interposed between two vertebrae to promote their bony fusion. This fusion technology was approved already in 1996 by FDA, over the years both interbody cage design and materials have changed considerably. Nowadays the most common interbody cages are titanium and PEEK box-shaped. Ti has an elastic modulus of 100 GPa, this stiffness difference compared to the cortical bone leads to some drawbacks in spinal application such as subsidence and stress shielding, with the possibility of causing the implant failure. In order to overcome the limits of Ti, a decade later, PEEK was introduced as a biomaterial to produce interbody cages. PEEK is bioinert, displays an elastic modulus similar to the cortical bone and is radiolucent. These characteristics provide the potential to minimize stress shielding compared to Ti cages and permit easy assessment of bone fusion using radiography. For these reasons PEEK seems to be a better candidate in spinal application compared to Ti, however a compromising disadvantage is that it’s chemically inert and does not promote cell adhesion and bone contact. The osseointegration process is very complex and depends on many factors, including implant shape, surgical technique and patient history. Among them surface roughness is a very important one, Wennerberg et al. in his study indicates the ideal range for roughness parameters for a proper bone apposition to the implant. Even surface chemistry is a crucial factor, Wu et al. during a study in vivo demonstrated twice the bone volume on implants coated with titanium dioxide compared to neat PEEK. Another relevant topic, especially in the spinal district, are surgical site infections that led to longer hospitalization with an additional average cost of $2.734 for each patient. In spinal surgery Blam et al. found an infection rate of 9.4%. Both for economic reasons and for implant success, it is of fundamental importance to prevent the occurrence of infections during spinal fusion surgery. An established route is the one that involves the incorporation of antibiotics and antiseptics into the biomaterial coating such as gentamicin, vancomycin, cefazolin and teicoplanin. However, one of the most promising strategies available is the incorporation of inorganic antimicrobial agents into the coating, among them silver is certainly the most well-known and used ion . Aim of the thesis The following thesis work aims at creating a favorable PEEK surface through a combination of surface treatments with a dual purpose: • Improve osseointegration compared to the neat PEEK, trying to bridge the bony fusion rate gap with respect to Ti. • create an antibacterial effect taking in account the critical topic of post-implantation bacterial infections in the spinal district. Materials and methods Samples preparation is therefore summarized in the following two steps: • sandblasting treatment to increase the surface roughness. • silver-doped titanium dioxide sol-gel coating to give the desired antibacterial effect. The samples used were PEEK disks (Plasting s.r.l., MI). During the first experimental step, the optimization of the sandblasting process was carried out. The samples were sandblasted with 5 sandblasting agents (fine sodium chloride, sodium chloride, sodium bicarbonate, Meltron™ and alumina) modifying sandblasting distance and time. Following the sandblasting, SEM images were obtained to evaluate the effectiveness of the treatment and to have a qualitative idea of the surface morphology. The samples were subsequently characterized with laser profilometry to quantify the surface roughness and finally their wettability was evaluated with contact angle measurements. At the end of this first characterization, 4 of the 40 different sandblasting treatments were selected. The second experimental step was therefore to coat the selected types of samples. The formulation of the titanium dioxide sol-gel, already optimized in a previous thesis work. Silver nitrate (0.01 M) was added to give the desired antibacterial effect. The samples were then coated with dip-coating technique and treated in stove at 120 °C for one hour. The coating deposited was analyzed with multiple chemical-physical characterizations: the SEM/EDS analysis allowed to evaluate its goodness and homogeneity, the crystallization of titanium dioxide was defined by XRD and adhesion of the coating to PEEK substrate was evaluated by microindentations. Based on the results obtained, 3 of the 4 types of samples were selected and the wettability of the coated surfaces was assessed. The last experimental step involved antibacterial microbiological and cell viability tests on two types of samples: sandblasted and sandblasted/coated ones. For microbiological tests, the bacterial concentration of Staphylococcus aureus was assessed after 24 hours of culture at 37 ° C. In vitro cellular tests, on the other hand, were carried out with immortalized osteoblastic MG63 cells (ATCC® CRL-1427TM), evaluating cell viability with Alamar Blue after 1, 3, and 7 days from seeding. Results and discussion The optimization of the sandblasting process was successful, despite softer sandblasting agents than those normally employed, the treatment was effective in all the types of treatment. The roughness values obtained were consistent with the ranges that according to the literature allow for a proper osseointegration. The sandblasting treatment seemed not to affect the wettability of the samples, in fact contact angles were around 110° consistently with the intrinsic hydrophobicity of PEEK. The characterization of the titanium dioxide coating deposited on the samples also returned positive results. The SEM/EDS analysis showed a coating homogeneously distributed and from the XRD it was possible to conclude that the deposited titanium dioxide is mainly amorphous, coherently with the temperature of the heating treatment. The coating seemed also to be well adhered to the polymeric surface and showed no cracks after the microindentations. The deposition of the coating also led to a drastic change in the surface wettability of the samples, in fact contact angles around 50°, characteristic of a hydrophilic surfaces, were obtained. Microbiological tests showed the desired antibacterial behavior of the coated samples compared to those only sandblasted. Direct cytotoxicity tests, on the other hand, did not lead to the expected results: the cells seeded on the sandblasted samples in fact showed good vitality while those on the sandblasted/coated ones brought to vitality results near zero. This could depend either on a lack of adhesion of the cells due to the surface chemistry or on the presence of silver which has a strong cytotoxic effect, similarly as seen for bacteria. Conclusion At the end of this experimental work it can therefore be said that the sandblasting treatment to increase the surface roughness of the PEEK was effective despite the use of unconventional blasting agents and its optimization process was completed successfully. Moreover, the choice of soluble abrasives is crucial as it solves the problem of possible contamination of the sandblasted surfaces. It has also been verified that it is possible to coat the polymer samples with a thin film of silver-doped titanium dioxide, previously already deposited on other substrates. The coating was found to be homogeneously distributed and well adhered to the substrate, whose important antibacterial action was verified. The only drawback within this work are the results of in vitro cellular tests that have demonstrated zero cell viability on the coated samples. This behavior will be analyzed better with future developments to understand what it depends on and how to overcome it.
Introduzione Dalla fine degli anni ’90 il PEEK è diventato sempre più un valido sostituto ai componenti metallici in ortopedia. Attualmente è impiegato in un vasto spettro di applicazioni medi- che, come: chirurgia ortopedica, ricostruzioni maxillo-facciali, impianti dentali e chirurgia spinale. I disturbi nel distretto spinale sono molto comuni, il mal di schiena cronico è un invalidante problema di salute che porta ad un peggioramento della qualità della vita e ad un sensibile innalzamento del costo sanitario. In particolare una delle cause principali sono le malattie degenerative del disco che comportano una variazione del carico sulla colonna. Il sovraccarico nella parte posteriore delle vertebre può causare due condizioni patologiche chiamate spondilolisi e spondilolistesi. Questa varietà di patologie può essere trattata usando una procedura chirurgica chiamata fusione spinale. È stato stimato che solo negli Stati Uniti vengono eseguite oltre 400.000 fusioni spinali all’anno. L’approccio chirurgico mira alla stabilizzazione del segmento degenerato mediante un dispositivo, il cage, interposto tra due vertebre per promuovere la loro fusione. Questo dispositivo medico è stato approvato già nel 1996 dalla FDA; nel corso degli anni sia il design che i materiali utilizzati sono cambiati notevolmente. Attualmente i cages più comuni sono in titanio e in PEEK. Il modulo elastico del Ti è di circa 100 GPa, questa differenza di rigidità rispetto all’osso corticale comporta alcune problematiche nell’applicazione spinale come la subsidenza che può causare il fallimento dell’impianto. Al fine di superare i limiti del Ti, un decennio dopo, il PEEK è stato introdotto come biomateriale per produrre cages. Il PEEK è bioinerte, presenta un modulo elastico simile all’osso corticale ed è radiolucente. Queste caratteristiche offrono il potenziale per ridurre al minimo la subsidenza caratteristica dei cages in Ti e consentono una facile valutazione della fusione ossea mediante radiografia. Per questi motivi il PEEK sembra essere un miglior candidato nell’applicazione spinale rispetto al Ti; tuttavia uno svantaggio compromettente è che, essendo chimicamente inerte, non promuove l’adesione cellulare e il contatto osseo. Il processo di osteointegrazione è molto complesso e dipende da una molteplicità di fattori, tra cui la forma dell’impianto, la tecnica chirurgica e l’anamnesi del paziente. Tra questi, la rugosità superficiale è determinante, Wennerberg et al. nel suo studio indica l’intervallo ideale dei parametri di rugosità per un’ adeguata apposizione ossea all’impianto. Anche la chimica superficiale è un fattore cruciale, Wu et al. durante uno studio in vivo hanno dimostrato un’apposizione del tessuto osseo doppia su impianti rivestiti con biossido di titanio rispetto al PEEK non trattato. Un altro aspetto rilevante, specialmente nel distretto spinale, sono le infezioni del sito chirurgico che portano ad un ricovero più lungo con un costo medio aggiuntivo di $2.734 per ciascun paziente. A seguito di interventi di chirurgia spinale Blam et al. hanno riscontrato un tasso di infezione del 9,4%. Sia per ragioni economiche che per il successo dell’impianto, è quindi di fondamentale importanza prevenire l’insorgenza di infezioni a seguito di fusione spinale. Un percorso valido è quello che prevede l’incorporazione di antibiotici e antisettici nel rivestimento biomateriale come gentamicina, vancomicina, cefazolina e teicoplanina. Tuttavia una delle strategie più promettenti disponibili sembrerebbe essere l’incorporazione di agenti antimicrobici inorganici nel rivestimento, tra i quali l’argento è sicuramente lo ione più noto e usato. Scopo della tesi Il seguente lavoro di tesi mira a creare una favorevole superficie in PEEK attraverso una combinazione di trattamenti superficiali con un duplice scopo: • migliorare l’osteointegrazione rispetto al PEEK non trattato, cercando di colmare il divario di fusione ossea rispetto al Ti. • creare un effetto antibatterico tenendo conto delle infezioni batteriche post-impianto, argomento critico specialmente per distretto spinale. Materiali e Metodi La procedura di preparazione dei campioni seguita può essere quindi divisa in due step: • trattamento di sabbiatura per aumentare la rugosità superficiale. • rivestimento in sol-gel di biossido di titanio con argento per dare l’effetto antibatterico desiderato. I campioni utilizzati sono stati dischetti di PEEK (Plasting s.r.l., MI). Durante il primo step sperimentale è stata svolta l’ottimizzazione del processo di sabbiatura. I campioni sono stati sabbiati con 5 agenti sabbianti (cloruro di sodio fine, cloruro di sodio, bicarbonato di sodio, Meltron™ ed allumina) modificando distanza e tempo di sabbiatura. A seguito della sabbiatura sono stati analizzati al SEM per valutare l’efficacia del trattamento e avere un’idea qualitativa della morfologia superficiale. Successivamente sono stati caratterizzati con profilometria laser per quantificare la rugosità superficiale ed infine è stata valutata la loro bagnabilità con misure dell’angolo di contatto. Al termine di questa prima caratterizzazione tra i 40 trattamenti di sabbiatura effettuati ne sono stati selezionati 4. Il secondo step sperimentale è stato quindi quello di rivestire le tipologie di campioni selezionati. La formulazione del sol-gel in biossido di titanio, già ottimizzata in un precedente lavoro di tesi. Ad essa è stato quindi aggiunto nitrato di argento (0.01 M) per conferire il desiderato effetto antibatterico. I campioni sono stati rivestiti mediante tecnica di dip-coating e trattati in stufa a 120°C per un’ora. Il rivestimento depositato è stato sottoposto ad una serie di caratterizzazioni chimico-fisiche: l’analisi SEM/EDS ha permesso di valutarne la bontà e l’omogeneità, la cristallizzazione del biossido di titanio è stata analizzata tramite analisi XRD e l’adesione del rivestimento al substrato i PEEK è stata valutata mediante microindentazioni. Analizzando i risultati ottenuti sono state selezionate 3 delle 4 tipologie di campioni ed è stata valutata la bagnabilità delle superfici rivestite. L’ultimo step ha previsto la conduzione di prove microbiologiche antibatteriche e test di vitalità cellulari su due tipologie di campioni: solamente sabbiati e sabbiati e rivestiti. Per le prove microbiologiche è stata valutata la concentrazione batterica di Staphylococcus aureus dopo 24h di coltura a 37°C. I test cellulari in vitro invece sono stati condotti con cellule di tipo osteoblasta immortalizzate MG63 (ATCC® CRL-1427TM), andando a valutare la vitalità cellulare con Alamar Blue a 1, 3 e 7 giorni dalla semina. Risultati e Discussione L’ottimizzazione del processo di sabbiatura è stata conclusa con successo, nonostante l’utilizzo di agenti sabbianti meno duri rispetto a quelli normalmente impiegati il trattamento è risultato efficace in tutte le tipologie adottate. I valori di rugosità ottenuti sono stati coerenti con i range che secondo la letteratura consentono una corretta osteointegrazione. Il trattamento di sabbiatura è parso non incedere sulla bagnabilità dei campioni che hanno mostrato angoli di contatto intorno ai 110°, coerentemente con l’intrinseca idrofobicità caratteristica del PEEK. Anche la caratterizzazione del coating in biossido di titanio depositato sui campioni ha dato risultati positivi. L’analisi SEM/EDS ha mostrato un rivestimento omogeneamente distribuito sulla superficie e dall’analisi XRD si è potuto concludere che il biossido di titanio depositato è in forma prevalentemente amorfa, coerentemente con la temperatura del trattamento termico a cui è stato sottoposto. Il rivestimento è sembrato inoltre ben adeso alla superficie polimerica e non ha mostrato cricche a seguito delle microindentazioni. La deposizione del coating ha inoltre portato ad un drastico cambiamento della bagnabilità superficiale dei campioni, sono stati infatti ottenuti angoli di contatto intorno ai 50° caratteristici di una superficie idrofilica. I test microbiologici hanno mostrato il desiderato comportamento antibatterico dei campioni rivestiti rispetto a quelli solamente sabbiati, la crescita batterica sui campioni rivestiti è risultata praticamente nulla. I test di citotossicità diretta invece non hanno portato ai risultati sperati: le cellule seminate sui campioni solamente sabbiati infatti hanno mostrato una buona vitalità mentre quelle sui campioni sabbiati e rivestiti hanno portato a risultati di vitalità prossimi allo zero. Questo potrebbe dipendere o da una mancata adesione delle cellule a causa della chimica superficiale o dalla presenza di argento che ha un forte effetto citotossico, analogamente a quanto visto per i batteri. Conclusioni Al termine di questo lavoro sperimentale si può quindi affermare che il trattamento di sabbia- tura per aumentare la rugosità superficiale del PEEK è risultato efficace nonostante l’utilizzo di agenti sabbianti non convenzionali e il suo processo di ottimizzazione è stato portato a termine con successo. La scelta di abrasivi solubili è inoltre determinante poichè risolve il problema di eventuali contaminazioni delle superfici sabbiate. E’ stato inoltre verificato che è possibile rivestire i campioni polimerici con un sottile film in biossido di titanio dopato con argento, precedentemente già depositato su altri substrati. Il rivestimento è risultato essere omogeneamente distribuito e ben adeso al substrato, la cui importante azione antibatterica è stata verificata. Unico neo all’interno del presente lavoro sono i risultati dei test cellulare in vitro che hanno dimostrato una nulla vitalità cellulare sui campioni con il rivestimento. Questo comportamento sarà da analizzare meglio con successivi sviluppi per capire da cosa dipenda e come ovviarlo.
Polyetherethereketone surface modification with antibacterial treatment for spinal application
VILLA, JACOPO
2018/2019
Abstract
Introduction Since the late 1990s PEEK has increasingly become an efficient substitute for metal components in orthopedics. Nowadays it is employed in a huge spectra of medical applications, such as: orthopedic surgery, maxillofacial reconstructions, dental implants and spinal surgery. Disorders in the spinal district are very common, chronic back pain is a huge health problem that leads to loss of quality of life and high costs for healthcare system. In particular one of the main causes are disc degenerative diseases which led to a large shift in load-bearing on the column. The overload in the posterior part of the vertebrae can cause two pathological conditions called spondylolysis and spondylolisthesis. This variety of spinal disorders can be treated using a surgical procedure called spinal fusion. It has been estimated that just in the United States over 400.000 spinal fusions per year are performed. The surgery approach aims to stabilize the degenerated segment using a device, the cage, interposed between two vertebrae to promote their bony fusion. This fusion technology was approved already in 1996 by FDA, over the years both interbody cage design and materials have changed considerably. Nowadays the most common interbody cages are titanium and PEEK box-shaped. Ti has an elastic modulus of 100 GPa, this stiffness difference compared to the cortical bone leads to some drawbacks in spinal application such as subsidence and stress shielding, with the possibility of causing the implant failure. In order to overcome the limits of Ti, a decade later, PEEK was introduced as a biomaterial to produce interbody cages. PEEK is bioinert, displays an elastic modulus similar to the cortical bone and is radiolucent. These characteristics provide the potential to minimize stress shielding compared to Ti cages and permit easy assessment of bone fusion using radiography. For these reasons PEEK seems to be a better candidate in spinal application compared to Ti, however a compromising disadvantage is that it’s chemically inert and does not promote cell adhesion and bone contact. The osseointegration process is very complex and depends on many factors, including implant shape, surgical technique and patient history. Among them surface roughness is a very important one, Wennerberg et al. in his study indicates the ideal range for roughness parameters for a proper bone apposition to the implant. Even surface chemistry is a crucial factor, Wu et al. during a study in vivo demonstrated twice the bone volume on implants coated with titanium dioxide compared to neat PEEK. Another relevant topic, especially in the spinal district, are surgical site infections that led to longer hospitalization with an additional average cost of $2.734 for each patient. In spinal surgery Blam et al. found an infection rate of 9.4%. Both for economic reasons and for implant success, it is of fundamental importance to prevent the occurrence of infections during spinal fusion surgery. An established route is the one that involves the incorporation of antibiotics and antiseptics into the biomaterial coating such as gentamicin, vancomycin, cefazolin and teicoplanin. However, one of the most promising strategies available is the incorporation of inorganic antimicrobial agents into the coating, among them silver is certainly the most well-known and used ion . Aim of the thesis The following thesis work aims at creating a favorable PEEK surface through a combination of surface treatments with a dual purpose: • Improve osseointegration compared to the neat PEEK, trying to bridge the bony fusion rate gap with respect to Ti. • create an antibacterial effect taking in account the critical topic of post-implantation bacterial infections in the spinal district. Materials and methods Samples preparation is therefore summarized in the following two steps: • sandblasting treatment to increase the surface roughness. • silver-doped titanium dioxide sol-gel coating to give the desired antibacterial effect. The samples used were PEEK disks (Plasting s.r.l., MI). During the first experimental step, the optimization of the sandblasting process was carried out. The samples were sandblasted with 5 sandblasting agents (fine sodium chloride, sodium chloride, sodium bicarbonate, Meltron™ and alumina) modifying sandblasting distance and time. Following the sandblasting, SEM images were obtained to evaluate the effectiveness of the treatment and to have a qualitative idea of the surface morphology. The samples were subsequently characterized with laser profilometry to quantify the surface roughness and finally their wettability was evaluated with contact angle measurements. At the end of this first characterization, 4 of the 40 different sandblasting treatments were selected. The second experimental step was therefore to coat the selected types of samples. The formulation of the titanium dioxide sol-gel, already optimized in a previous thesis work. Silver nitrate (0.01 M) was added to give the desired antibacterial effect. The samples were then coated with dip-coating technique and treated in stove at 120 °C for one hour. The coating deposited was analyzed with multiple chemical-physical characterizations: the SEM/EDS analysis allowed to evaluate its goodness and homogeneity, the crystallization of titanium dioxide was defined by XRD and adhesion of the coating to PEEK substrate was evaluated by microindentations. Based on the results obtained, 3 of the 4 types of samples were selected and the wettability of the coated surfaces was assessed. The last experimental step involved antibacterial microbiological and cell viability tests on two types of samples: sandblasted and sandblasted/coated ones. For microbiological tests, the bacterial concentration of Staphylococcus aureus was assessed after 24 hours of culture at 37 ° C. In vitro cellular tests, on the other hand, were carried out with immortalized osteoblastic MG63 cells (ATCC® CRL-1427TM), evaluating cell viability with Alamar Blue after 1, 3, and 7 days from seeding. Results and discussion The optimization of the sandblasting process was successful, despite softer sandblasting agents than those normally employed, the treatment was effective in all the types of treatment. The roughness values obtained were consistent with the ranges that according to the literature allow for a proper osseointegration. The sandblasting treatment seemed not to affect the wettability of the samples, in fact contact angles were around 110° consistently with the intrinsic hydrophobicity of PEEK. The characterization of the titanium dioxide coating deposited on the samples also returned positive results. The SEM/EDS analysis showed a coating homogeneously distributed and from the XRD it was possible to conclude that the deposited titanium dioxide is mainly amorphous, coherently with the temperature of the heating treatment. The coating seemed also to be well adhered to the polymeric surface and showed no cracks after the microindentations. The deposition of the coating also led to a drastic change in the surface wettability of the samples, in fact contact angles around 50°, characteristic of a hydrophilic surfaces, were obtained. Microbiological tests showed the desired antibacterial behavior of the coated samples compared to those only sandblasted. Direct cytotoxicity tests, on the other hand, did not lead to the expected results: the cells seeded on the sandblasted samples in fact showed good vitality while those on the sandblasted/coated ones brought to vitality results near zero. This could depend either on a lack of adhesion of the cells due to the surface chemistry or on the presence of silver which has a strong cytotoxic effect, similarly as seen for bacteria. Conclusion At the end of this experimental work it can therefore be said that the sandblasting treatment to increase the surface roughness of the PEEK was effective despite the use of unconventional blasting agents and its optimization process was completed successfully. Moreover, the choice of soluble abrasives is crucial as it solves the problem of possible contamination of the sandblasted surfaces. It has also been verified that it is possible to coat the polymer samples with a thin film of silver-doped titanium dioxide, previously already deposited on other substrates. The coating was found to be homogeneously distributed and well adhered to the substrate, whose important antibacterial action was verified. The only drawback within this work are the results of in vitro cellular tests that have demonstrated zero cell viability on the coated samples. This behavior will be analyzed better with future developments to understand what it depends on and how to overcome it.File | Dimensione | Formato | |
---|---|---|---|
Tesi_VILLA_JACOPO.pdf
non accessibile
Descrizione: testo della tesi
Dimensione
29.45 MB
Formato
Adobe PDF
|
29.45 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/152936