The dynamic simulator market experienced a considerable expansion recently, since the 1970's, both in industrial field and entertaining one. In both the fields high dynamic performances are required but while simulators designed for entertainment give priority to reduced bulkiness, the industrial ones are typically characterized by wide workspaces, in order to realize prolonged accelerations resulting in more realistic motion simulations. The possible use of industrial driving simulators can be very diversified: in automotive and aerospace fields with studies on human reactions, pilot training, or tests on autonomous vehicles control logics, but also in civil field with seismic and wave motion simulations. Complex robotic systems are necessary to perform similar tasks, but nowadays their development results often related to experience based and "trial and error" methods, which are difficult to be generalised and do not lead to optimal solutions. The aim of this thesis is to evaluate the possibility of assessing the dynamic properties of the simulator under study for different poses in the work space through the tool of finite element analysis in order to guarantee the avoidance of vibratory phenomena during operation. The work start with the definition of kinematic chains needed to define the position of the joints starting from the pose of the robot; then the design of the top plate of the machine is refined thanks to FEM modal analysis in order to guarantee the required natural frequencies. Once the final design is achieved a FEM model is built and then a simple code that solve the inverse kinematics of the robot imposing the position of the joints to the model is written. In this way it possible to automatize the analysis for a series of poses in order to extract the trend of frequencies depending on the position. Then an experimental campaign is performed to check the results of the model with respect to the real machine. Finally the FEA model is refined adding the contribution of the drive train and its results are compared to the experimental ones and the new frequencies trends are extracted.
Il mercato dei simulatori dinamici ha registrato una notevole espansione recentemente,circa dagli anni '70, sia in campo industriale che in quello del divertimento. In entrambi i campi sono richieste elevate prestazioni dinamiche, ma mentre i simulatori progettati per l'intrattenimento danno la priorità alla riduzione dell'ingombro, quelli industriali sono tipicamente caratterizzati da ampi spazi di lavoro, al fine di realizzare accelerazioni prolungate che portano a simulazioni di movimento più realistiche. Il possibile uso di simulatori industriali di guida può essere molto diversificato: in ambito automobilistico e aerospaziale con studi sulle reazioni umane, addestramento dei piloti o test su logiche di controllo di veicoli autonomi, ma anche in campo civile con simulazioni di movimento sismico e ondulatorio. Complessi sistemi robotici sono necessari per svolgere attività simili, ma oggigiorno i loro sviluppi sono spesso frutto di metodi basati sull'esperienza e sul "trial and error", difficili da generalizzare e che non portano a soluzioni ottimali. Lo scopo di questa tesi è valutare la possibilità di valutare le proprietà dinamiche del simulatore in studio per le diverse pose nello spazio di lavoro attraverso lo strumento di analisi agli elementi finiti al fine di evitare fenomeni vibratori durante il funzionamento. Il lavoro inizia con la definizione delle catene cinematiche necessarie per definire la posizione dei giunti a partire dalla posa del robot; successivamente il design della piastra superiore della macchina viene perfezionato grazie all'analisi modale FEM al fine di garantire le frequenze naturali richieste. Una volta raggiunto il design finale, viene costruito un modello FEM insieme ad un semplice codice che risolve la cinematica inversa del robot imponendo la posizione dei giunti al modello FEM. In questo modo è possibile automatizzare l'analisi per una serie di pose al fine di estrarre l'andamento delle frequenze in base alla posizione. Quindi viene eseguita una campagna sperimentale per verificare i risultati del modello rispetto alla macchina reale. Infine, il modello FEA viene perfezionato aggiungendo il contributo della trasmissione e i suoi risultati vengono confrontati con quelli sperimentali e vengono estratti i nuovi andamenti della frequenze.
Modal characterization and design improvement of a 6 DoFs parallel kinematic dynamic simulator
CAMNASIO, MATTIA
2018/2019
Abstract
The dynamic simulator market experienced a considerable expansion recently, since the 1970's, both in industrial field and entertaining one. In both the fields high dynamic performances are required but while simulators designed for entertainment give priority to reduced bulkiness, the industrial ones are typically characterized by wide workspaces, in order to realize prolonged accelerations resulting in more realistic motion simulations. The possible use of industrial driving simulators can be very diversified: in automotive and aerospace fields with studies on human reactions, pilot training, or tests on autonomous vehicles control logics, but also in civil field with seismic and wave motion simulations. Complex robotic systems are necessary to perform similar tasks, but nowadays their development results often related to experience based and "trial and error" methods, which are difficult to be generalised and do not lead to optimal solutions. The aim of this thesis is to evaluate the possibility of assessing the dynamic properties of the simulator under study for different poses in the work space through the tool of finite element analysis in order to guarantee the avoidance of vibratory phenomena during operation. The work start with the definition of kinematic chains needed to define the position of the joints starting from the pose of the robot; then the design of the top plate of the machine is refined thanks to FEM modal analysis in order to guarantee the required natural frequencies. Once the final design is achieved a FEM model is built and then a simple code that solve the inverse kinematics of the robot imposing the position of the joints to the model is written. In this way it possible to automatize the analysis for a series of poses in order to extract the trend of frequencies depending on the position. Then an experimental campaign is performed to check the results of the model with respect to the real machine. Finally the FEA model is refined adding the contribution of the drive train and its results are compared to the experimental ones and the new frequencies trends are extracted.File | Dimensione | Formato | |
---|---|---|---|
2020_04_Camnasio.pdf
non accessibile
Descrizione: Testo della Tesi
Dimensione
77.03 MB
Formato
Adobe PDF
|
77.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/152985